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I. INTRODUCTION 

Analytic techniques to mitigate computer round-off error are applied to algorithms for 
solving cubic and quartic equations.  A computer, operating in double precision, usually 
produces a calculated-solution relative error on the order of 10−16 or less, but this small 
error value can increase by many orders of magnitude for certain conditions: 

• multiplicity condition - Two or more equation solutions equal the same real value. 
• magnitude condition - The absolute values (or magnitudes) of two equation 

solutions differ from each other by several orders of magnitude. 
• symmetry condition – A quartic equation has a quartic polynomial P(Z) that is 

symmetric about some argument value ZC:  P(ZC + Z) = P(ZC − Z). 
Examples of these conditions in Table I are described below.  Our design eliminates this 
error magnification by applying error mitigation to the Practical Algorithm for Solving the 
Cubic Equation and Modified Euler Algorithm for Solving the Quartic Equation.  These two 
algorithms are provided below (Figures 1, 2) and are described in detail elsewhere on this 
website: https://quarticequations.com. 
 
Calculated-solution round-off error is caused by the computer’s limited precision for real-
number storage.  The mitigation design presented here assumes standard double-precision 
computation for floating point numbers (binary64) [1], [2].  Of the number’s 64 bits 
storage, one bit is the sign bit, 11 bits store the binary exponent, and 52 bits store the 
fraction.  The mantissa storage of a non-zero real number consists of an implicit 1 followed 
by the binary point and 52 binary places.  The maximum storage error is an incorrect least-
significant bit.  Thus, the maximum relative storage error for this format is  

ε = 2−52 ≈ 2.22×10−16. 

The calculated solutions of most cubic and quartic equations have relative errors, if any, on 
the order of ε or less. 
 
Solution error can be much greater for equations exhibiting the multiplicity, magnitude, or 
similarity conditions as demonstrated in the five example equations of Table I below.  
Examples 1 and 2 demonstrate the multiplicity condition.  The cubic equation of Example 1 
has two equal solutions (multiplicity 2) with relative solution error on the order of 10 −8.  
The quartic equation of Example 2 has three equal solutions (multiplicity 3) and relative 
error on the order of 10 −5.  Example 3 demonstrates the symmetry condition.  The quartic 
polynomial, and therefore, the four solutions 7, 4.2, −0.2 and −3, are symmetrical about the 
value Z = ZC = 2.  The solutions stay the same in Example 4 except that the third solution is 
changed very slightly from −0.2 to −0.2000001.  Thus Example 4 is not symmetric, but it is 
a symmetry near miss.  Example 3 and 4 relative error is on the order of 10 −7.  Example 5 is 
an extreme example of the magnitude condition:  the absolute values of the quartic 
equation’s four solutions differ from each the other by many orders of magnitude.  Round-

https://quarticequations.com/


Introduction 

9/24/2021  Page 2 of 136 

off error swamps the two smallest-magnitude solutions so that their calculated values are 
worthless. 
 
The mitigation design addresses all of these conditions of round-off error magnification, 
and calculates solutions for the tabulated equations with relative error less than 10−14.  
With very rare exceptions for the quartic equation, any true real solution of a cubic or 
quartic equation is calculated as a real value, not a complex value with a small imaginary 
component. 
 

Table I.   Example Equations with Magnified Solution Error 

1. The cubic equation zn3 − 5 zn2 + 8 zn− 4 = 0 has true solutions 2, 2, and 1, but the 
calculated solutions are 1 and 2 ± i 1.676380642679 × 10 −8. 

2. The quartic equation Zn4  − 4.2 Zn3 + 6.6 Zn2  − 4.6  Zn+ 1.2 = 0 has true solutions 
1.2, 1, 1, 1, but the calculated solutions are  
1.2, 0.999991545140, and 1.000004227430 ± i 0.000007322698. 

3. The quartic equation Zn4  − 8 Zn3 − 5.84 Zn2  + 87.36  Zn+ 17.64 = 0 has true 
solutions 7, 4.2, −0.2 and −3, but the calculated solutions are      
7.000000042147,  4.199999957853 , −0.200000042147, and −2.999999957853. 

4. The quartic equation Zn4  − 7.9999999 Zn3 − 5.84000082 Zn2  + 87.35999958  Zn+ 

17.64000882 = 0 has true solutions 7, 4.2, −0.2000001, and −3, but the 
calculated solutions are 7.000000017147, 4.199999982853, −0.200000117147, 
and −2.999999982853. 

5. The quartic equation  
Zn4  − 6.99970002 Zn3 − 2.099860005965×10 −3 Zn2  + 4.20000104993×10 −11  Zn− 

2.1 × 10 −25 = 0 
has true solutions 
7,    −3×10 −4,   2×10 −8,   and   5×10 −15,    
but the calculated solutions are 
7,   −3.00019431496×10 −4  and 
1.97157508097×10 −8   ±   i 2.41435601527×10 −6. 

Calculation results in this table are produced by coding the cubic- and quartic-equation 
algorithms (Figures 1, 2) in Excel 2016 Visual Basic for Applications (VBA) using double 
precision for floating-point numbers. 

 
The mitigation design also addresses cubic and quartic equations with multiplicity near 
miss (two solutions are not equal, but are nearly equal). 
 
Finally, the mitigation design addresses the special cases of cubic and quartic equation for 
which the constant coefficient is zero, which implies that at least one solution is zero.  The 
algorithms in Figures 1 and 2 may return the zero solution as a small round-off error.  Such 
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a result for the resolvent cubic equation of a symmetric quartic equation produces 
magnified round-off error in the quartic-equation calculated solutions. 
 
Summary 
Our presentation of the mitigation design begins in Section II with a review of the Practical 
Algorithm for Solving the Cubic Equation and the Modified Euler Algorithm for Solving the 
Quartic Equation. 
 
Section III describes cubic- and quartic-equation special cases that are incorporated into 
the round-off-error mitigation design.  Solutions for these cases can be calculated more 
easily than by using the full cubic- and quartic-equation algorithms, and round-off error is 
also reduced.  The set of special cases provides the preliminary logic structure in the form 
of algorithm flowcharts for the round-off error mitigation design.  One of the special cases 
requires the solutions of a quadratic equation, so this section also introduces a quadratic-
equation algorithm based on recommendations in Numerical Recipes [3, §5.6] by Press, 
et al.  Unlike the quadratic formula, this quadratic-equation algorithm mitigates against 
round-off error when the absolute values of the two solutions differ by many orders of 
magnitude (magnitude condition). 
 
Section IV addresses the multiplicity condition (two or more equation solutions equal the 
same real value).  It shows how multiplicity magnifies solution round-off error, and then it 
eliminates the problem by introducing new calculations into the Section III algorithms.  The 
algorithms for solving quadratic, cubic, and quartic equations take their final form.  
Demonstrations using Examples 1 and 2 from Table I above show how the mitigation 
calculations work.   The mitigation technique for multiplicity also addresses the quartic-
equation symmetry condition as demonstrated using Table I, Example 3. 
 
The presentation also explains why the modified Euler algorithm was chosen from among 
the available quartic-equation algorithms for the round-off error mitigation design.  The 
modified Euler algorithm reflects the conditions of quartic equation multiplicity and 
symmetry as a corresponding condition in the algorithm’s resolvent cubic equation 
(Figure 11) and its three solutions.  Euler’s application of all three resolvent-cubic-equation 
solutions greatly simplifies the mitigation design for quartic equations. 
 
Sections V and VI describe post-processing algorithms to address round-off-error 
magnification for the magnitude condition: cubic or quartic equations with at least two 
solutions whose absolute values differ by several orders of magnitude.  The algorithms of 
Section IV provide good accuracy for the larger-magnitude solutions, but round-off error 
can swamp the smaller-magnitude solutions.  To correct this situation, post processing 
applies the accurately-calculated, large-magnitude solution(s) to the cubic- or quartic-
equation coefficients to accurately extract the small-magnitude solution(s). 
 
The cubic-equation post processing, described in Section V, addresses not only the cubic-
equation magnitude condition, but also quartic-equation symmetry near-miss.  The reason 
is that such a quartic equation has a resolvent cubic equation with the magnitude 



Introduction 

9/24/2021  Page 4 of 136 

condition.  Section V works through the Table I, Example 4 quartic equation to 
demonstrate. 
 
Section VI describes the quartic-equation post-processing algorithm, which it demonstrates 
using the Table I, Example 5 quartic equation.  For its operation, the algorithm requires a 
generic value-ordering routine, which is also provided.  Quartic-equation post processing is 
the final piece of the error mitigation design. 
 
All calculations of the error-mitigation design for solving quadratic, cubic, and quartic 
equations are summarized in the figures listed below.  The figures are found in Sections IV, 
V, and VI.  
 

Table II.   Calculations with Round-Off Error Mitigation for Solving Quadratic, Cubic, and 
Quartic Equations 

Section # Figure # Page # Title 
IV 8 21 Final Calculation Algorithm for Solving the Quadratic Equation 

IV 9 22 Final Calculation Algorithm for Solving the Cubic Equation 
V 12 47 Cubic Equation Post Processing Algorithm 

IV 10 28 Final Calculation Algorithm for Solving the Quartic Equation 
VI 13 57 Quartic Equation Post Processing Algorithm 
VI 14 59 Value-Ordering Routine 

 
Sections VII through X provide an error analysis of the multiplicity and multiplicity near-
miss conditions to show that the mitigation design provides excellent solution accuracy. 
 
Unless noted otherwise, the radical sign √ denotes the principal square root.  The principal 
square root of a positive real number is the positive square root.  The principal square root 
of a negative real number is the positive imaginary square root.  If z is complex with 
modulus r and argument φ such that  −π < φ ≤ π, then z = reiφ and the principal square root 
of z is √z = √r eiφ/2. 
 
The following coding recommendations apply whenever calculation error is a concern. 

• To calculate an integer power of a real number, use repeated multiplication rather 
than exponentiation.  For example, code X3 as X*X*X rather than X^3. 

• To calculate an odd half power of a real number, use the square-root function rather 
than exponentiation.  For example, code X5/2 as X*X*SQRT(X) rather than X^(5/2). 

 
I thank my correspondents Demetrius Papademetriou and Vadym Koliada, whose interest 
in the round-off error problem inspired my effort here. 
 
See the website directory at https://quarticequations.com. 
 
Contact the author at david@quarticequations.com.  

https://quarticequations.com/
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II. REVIEW OF CUBIC- AND QUARTIC-EQUATION ALGORITHMS 

This section reviews the starting algorithms prior to applying round-off error mitigation. 
 
Review of the Cubic-Equation Algorithm 
Figure 1 below shows the practical cubic-equation algorithm for solving the cubic equation 

 zn3 + a2 zn2 + a1 zn+ a0 = 0,            n = 1, 2, 3. (1) 

Solution z1 is the greatest real solution.  The other two solutions, z2 = x2 + iy2 and 
z3 = x3 − iy2, are either real (y2 = 0) or a complex conjugate pair (x3 = x2).  Given the 
equations three real coefficients a2, a1, and a0, the algorithm calculates outputs z1, x2, x3, and 
y2 (y2 ≥ 0) so that z1, z2 = x2 + iy2, and z3 = x3 − iy2 satisfy 

 z3 + a2 z2 + a1 z + a0  =  (z − z1) (z − z2) (z − z3)  for all z. 

Valid solutions z1, z2 = x2 + iy2, and z3 = x3 − iy2 reproduce the input coefficients according 
to these check equations: 

    a2  =  − (z1 + z2 + z3)              a1  =  z1z2 + z1z3 + z2z3                       a0  =  −z1z2z3 (2) 

or 

    a2  =  − (z1 + x2 + x3)              a1  =  z1(x2+x3) + x2x3 + y22              a0  =  −z1(x2x3+y22) (3) 

 
Figure 1  Practical Algorithm for Solving the Cubic Equation 

Given: Real coefficients a2, a1, and a0, 

Find: z1, z2=x2+iy2, and z3=x3−iy2 such that  z3 + a2 z2 + a1 z + a0  =  (z − z1) (z − z2) (z − z3)  for all z. 

Calculate q and r:                         q = 
a1
3
− a22

9
               r = 

a1a2−3a0
6

− a23

27
 

Case: 1:  r2 + q3 > 0   ⇔   Only One Real Solution 
(Numerical Recipes) 

A = �|r| + �r2 + q3�
1/3

 

t1 =  �
A − q/A           if  r ≥ 0
q/A − A           if  r < 0

 

t2x = t3x = −t1/2                 y2 =
√3
2
�A +

q
A
� 

t2 = t2x + iy2,            t3 = t2x − iy2 

 

Case 2:   r2 + q3 ≤ 0    ⇔    Three Real Solutions 
(Viète) 

θ =  �
0                                                                 if  q = 0
Cos−1�Max{Min[r/(−q)3/2, 1], −1}�  if  q < 0 

                        Note:  0 ≤ θ ≤ π 

φ1 = θ/3       φ2 = φ1 − 2π/3       φ3 = φ1 + 2π/3 

 t1  = 2 �−q  cos φ1 

 t2 = t2x = 2 �−q  cos φ2 y2 = 0 

 t3 = t3x = 2 �−q  cos φ3 

Note:   t1  ≥  t2  ≥  t3    ⇒    z1  ≥  z2 = x2  ≥  z3 = x3 

z1 = t1 − a2/3,                 x2 = t2x − a2/3               x3 = t3x − a2/3                   Note:  z2 = x2 + iy2,    z3 = x3 − iy2 
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For cubic equations with one real solution, Case 1, the algorithm modifies Cardano’s 
formula [4, Chapter XI] as suggested by Press, et al. in Numerical Recipes [3, §5.6].  The 
algorithm applies Viète’s trigonometric method [5] for cubic equations with three real 
solutions, Case 2. 
  
The algorithm converts the general cubic equation (1) to an equivalent depressed cubic 
equation with no quadratic term:   

 tn3  + 3q tn − 2r = 0,            n = 1, 2, 3. (4) 

The real values q and r are calculated from coefficients a2, a1, and a0 as  

q =
a1
3
−

a22

9
                        r =

a1a2 − 3a0
6

−
a23

27
                                                 (5) 

The depressed solutions tn in (4) are related to the general solutions zn by 

 tn = zn + a2/3 ⇔ zn = tn − a2/3, n = 1, 2, 3. (6) 
 
In Figure 1, Case 2 (Three Real Solutions) the last entry is  

 t1  ≥  t2  ≥  t3    ⇒    z1  ≥   z2 = x2   ≥   z3 = x3 . (7) 

These inequalities are important to the mitigation design. 
 
The algorithm above is expanded somewhat compared to the corresponding algorithm in 
this website’s cubic-equation document https://quarticequations.com/Cubic.pdf.  In the 
formula for θ in Case 2, that document gives the argument of Cos−1 as r/(−q)3/2.  That 
argument is theoretically bound to the range [−1, 1] by the definition of Case 2: r2 + q3 ≤ 0.  
In practice, however, round-off error may take the calculated value of r/(−q)3/2 just outside 
this range and cause a run-time error in the Cos−1 calculation.  The Figure 1 algorithm 
avoids this possibility by clamping the argument to the range [−1, 1] explicitly with the 
expanded expression Max{Min[r/(−q)3/2, 1], −1}. 
 
Also, the Figure 1 algorithm explicitly calculates the three solutions t1, t2, and t3 of the 
depressed cubic equation (4).  These depressed solutions are key to understanding 
solution error due to computer round off. 
 
Review of the Modified Euler Quartic-Equation Algorithm 
Figure 2 below shows the modified Euler quartic-equation algorithm.  Inputs are four real 
coefficients A3, A2, A1, and A0, and the outputs are the four values Z1, Z2, Z3 and Z4 such that 

 Z4 + A3Z3 + A2Z2 + A1Z + A0  =  (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4) for all Z. 
The outputs are thus the four solutions of the general quartic equation 

 Zn4  + A3Zn3 + A2 Zn2  + A1 Zn+ A0 = 0,            n = 1, 2, 3, 4. (8) 
  

https://quarticequations.com/Cubic.pdf
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Figure 2  Modified Euler Algorithm for Solving the Quartic Equation 

Given:  Real coefficients  A3, A2, A1, and A0, 
Find:    Z1, Z2, Z3 and Z4 such that   Z4 + A3Z3 + A2Z2 + A1Z + A0  =  (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4) for all Z. 

Calculation: C   = A3 / 4,        b2 = A2 − 6C2,       b1 = A1 − 2A2C + 8C3,        b0 = A0 − A1C + A2C2 − 3C4 

 Use the cubic-equation algorithm to find the three solutions z1, z2, and z3 of the resolvent cubic 
equation: 

zk3+ (b2/2) zk2+ [(b22 − 4b0)/16] zk − b12/ 64 = 0. 

Of the three cubic-equation solutions, z1 is the greatest real solution and z1 ≥ 0.   Solutions z2 = x2 + iy2 
and z3 = x3 + iy3 are real (z2 = x2,  z3 = x3,  y2 = y3 = 0), or they form a complex conjugate pair 
(z2 = x2 + iy2,  z3 = x2 − iy2,  x2 = x3,  y2 = −y3 > 0).  In either case, 

z2 z3  =  x2 x3 + y22  ≥  0    and    x2 x3 ≥  0. 

The calculation of z1, z2, and z3 assures that if z2 and z3 are real, then z3 = x3 ≤ z2 = x2 ≤ z1.  To assure 
that round-off error does not cause a violation of z1 ≥ 0 and/or x2 x3 ≥  0, insert the following 
calculation logic: 

   If z1 < 0, then z1 = 0.        If x2 x3 <  0, then (If  x2 > −x3, then x3 = 0;  else x2 = 0.)    

 

Σ = 1 if b1 > 0,  Σ = −1 otherwise. 

  D1  = x2 + x3 − 2Σ�x2x3 + y2 D3  = x2 + x3 + 2Σ�x2x3 + y2 R1  =  �|D1| R3  =  �|D3| 

Case D1 ≥ 0: 

T1X = √z1 +  R1 

T2X = √z1 −  R1 

Y1 = 0 

Case D1 < 0: 

T1X = T2X = √z1 

Y1 = R1 

Case D3 ≥ 0: 

T3X = −√z1 +  R3 

T4X = −√z1 −  R3 

Y3 = 0 

Case D3 < 0: 

T3X = T4X = −√z1 

Y3 = R3 

X1 =  T1X − C                              X2 =  T2X − C                          X3 =  T3X − C                       X4 =  T4X − C 

 Note: T1  =  T1X + iY1, T2 = T2X − iY1  T3 = T3X + iY3 , T4 = T4X − iY3 

  Z1  =  T1  − C  =  X1 + iY1, Z2  =  T2  − C  =  X2 − Y1, 

  Z3  =  T3  − C  =  X3 + iY3, Z4  =  T4  − C  =  X4 − Y3 

 
The algorithm begins by calculating C = A3/4, b2, b1, and b0.  The last three of these values 
are coefficients of the equivalent depressed quartic equation with no cubic term: 

 Tn4 + b2Tn2 + b1Tn + b0  =  0 n = 1, 2, 3, 4. (9) 

The solutions Zn of (8) are related to the solutions Tn of (9) by 

                                   Tn = Zn + C       ⇔       Zn = Tn  −  C,            n = 1, 2, 3, 4. (10) 
 
The coefficients a2, a1, and a0 of the resolvent cubic equation are calculated from the 
depressed quartic equation coefficients bn as: 
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 a2  =  b2/2 (11) 

 a1  =  (b22 − 4b0)/16 (12) 

 a0  =  − b12/ 64. (13) 
 
The cubic-equation algorithm calculates the solutions z1, z2, and z3 of the resolvent cubic 
equation, and from them the quartic-equation algorithm calculates the depressed quartic-
equation solutions Tn = TnX + i Yn and the general solutions Zn = Xn + i Yn where 
Xn = TnX − C. 
 
The depressed solutions Tn are calculated as two pairs: T1, T2 and T3, T4.  Solutions T1 and 
T2 are either both real: 

 T1 =  T1X, T2 = T2x, Y1 = Y2 = 0       ⇒       Z1 = X1 = T1X   −  C,      Z2 = X2 = T2X   −  C, 

 or they form a complex conjugate pair: 

 T1X = T2x, Y2 = −Y1 > 0, T1 = T1X + i Y1, T2 =  T1X − i Y1     ⇒ 

 X1   = X2  = T1X   −  C, Z1 = X1 + i Y1, Z2 =  X1 − i Y1. 
In similar fashion, T3, T4 are either both real, or they form a complex conjugate pair.  The 
pair Z3, Z4 are both real or a complex conjugate pair accordingly.  
 
Valid solutions Z1, Z2, Z3 and Z4 of the quartic equation reproduce the input coefficients in 
compliance with the following check equations: 

A3  =  −(Z1+Z2+Z3+Z4) (14) 

A2  =  Z1Z2+Z1Z3+Z1Z4+Z2Z3+Z2Z4+Z3Z4 (15) 

A1  =  −(Z1Z2Z3+Z1Z2Z4+Z1Z3Z4+Z2Z3Z4) (16) 

A0  =  Z1Z2Z3Z4 . (17) 

OR 
A3 = −(X1+X2+X3+X4) (18) 

A2 = X1X2+Y12+(X1+X2)(X3+X4)+X3X4+Y32 (19) 

A1 = −[(X1X2+Y12)(X3+X4) + (X3X4+Y32)(X1+X2)] (20) 

A0 = (X1X2+Y12)(X3X4+Y32). (21) 
 
Figure 2 lists some important inequality relationships among solutions z1, z2, and z3 of the 
resolvent cubic equation.  When all three solutions are real, the cubic-equation algorithm 
assures that the calculated solutions obey z3 = x3 ≤ z2 = x2 ≤ z1.  To assure that round-off 
error does not cause a violation of z1 ≥ 0 and/or x2 x3 ≥  0, the algorithm inserts the 
following calculation logic: 
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If z1 < 0, then z1 = 0. 
If x2 x3 <  0, then 

if  x2 > −x3, then x3 = 0 
else x2 = 0. 

 
This last logic is omitted in the more-compact version of the algorithm in Practical 
Algorithms for Solving the Quartic Equation, https://quarticequations.com/Quartic.pdf.  
 
Another addition in the Figure 2 algorithm is the express calculation of the real and 
imaginary parts of solutions Tn of the depressed quartic equation (9). 
 

https://quarticequations.com/Quartic.pdf
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III. DEFINITIONS OF THE SPECIAL CASES 

This section describes cubic- and quartic-equation special cases, Figure 3, that are 
incorporated into the round-off-error mitigation design.  Solutions for these cases can be 
calculated more easily than by using the full cubic- and quartic-equation algorithms, and 
round-off error is also reduced.  The set of special cases provides the preliminary logic 
structure for the round-off error mitigation design. 

Figure 3   Cubic- and Quartic-Equation Special Cases 
Cubic-Equation Special Cases 

Case # Case Definition Solutions zn of the General Cubic Equation 
𝐳𝐳𝐧𝐧𝟑𝟑 + a2 𝐳𝐳𝐧𝐧𝟐𝟐 + a1 𝐳𝐳𝐧𝐧+ a0 = 0 

1 a0 = 0 
At least one solution zn is zero. 0 and the two solutions of zn2 + a2 zn+ a1 = 0 

 Solutions tn of the Depressed Cubic Equation 
𝐭𝐭𝐧𝐧𝟑𝟑  + 3q 𝐭𝐭𝐧𝐧 − 2r = 0 

2 
q = r = 0 
All three solutions zn equal the same real value 
(multiplicity 3 condition). 

t1 = t2 = t3 = 0 

3 
R ≡ r2 + q3 = 0,  r ≠ 0 
Two of the solutions zn equal the same real 
value (multiplicity 2 condition). 

(a)  t1 = 2�−q,           t2 = t3 =   −�−q     if r > 0 

(b)  t1 = t2 =  �−q,            t3 = −2�−q     if r < 0 

4 
r = 0,  q ≠ 0 
(a) The three zn have equal real parts if q > 0. 
(b) Three real zn are evenly distributed if q < 0. 

(a)  t1 = 0,           t2  =  −t3  = i �3q            if q > 0 

(b)  t1 = �−3q,   t2  =  0,   t3 =  −�−3q,    if q < 0 

Quartic-Equation Special Case 

5 
A0 = 0 Solution Z1 = 0.  Solutions Z2, Z3, and Z4 are the 

solutions z1, z2, and z3 respectively of the cubic 
equation zn3 + A3 zn2 + A2 zn+ A1 = 0. 

6 

b0 = 0 Depressed solution T1 = 0.  Solutions T2, T3, 
and T4 are the solutions z1, z2, and z3 
respectively of the cubic equation 
zn3 + b2zn + b1 = 0. 

 
Each special case corresponds to some parameter having a value of zero.  The most obvious 
cases are cubic, quartic, and depressed equations whose constant coefficient is zero.   
 
Cases 1, 5 and 6:  a0 = 0, A0 = 0, and b0 = 0 
In a cubic equation with Case 1 (a0 = 0) the left side of the cubic equation factors: 

zn3 + a2 zn2 + a1 zn+ a0 = zn3 + a2 zn2 + a1 zn =  (zn2 + a2 zn + a1) zn = 0.           (a0 = 0) 
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One solution is 0, and the other two are solutions of the quadratic equation 
zn2 + a2 zn+ a1 = 0.  When the quadratic-equation solutions are real, we avoid the quadratic 
formula because it unnecessarily introduces round-off error into the solution of smaller 
magnitude.  Instead, our design uses a quadratic-equation algorithm, described shortly, 
based on Numerical Recipes [3, §5.6] by Press, et al. 
 
The Case 5 quartic equation (A0 = 0) has solution Z1 equal to 0, and solutions Z2, Z3, and Z4 
are the solutions z1, z2, and z3 respectively of the cubic equation zn3 + A3 zn2 + A2 zn+ A1 = 0. 
 
The Case 6 quartic equation (b0 = 0) has depressed solution T1 equal to 0, and depressed 
solutions T2, T3, and T4 are the solutions z1, z2, and z3 respectively of the cubic equation 
zn3 + b2 zn + b1 = 0. 
 
Case 2:  q = r = 0   ⇔    all three solutions equal the same real value 

If q = r = 0, then the depressed cubic equation (4) reduces to tn3  = 0.  Then Equation (6) 
gives 

 t1 = t2 = t3 = 0    and     z1 = z2 = z3 = −a2 / 3       (q = r = 0) (22) 
 
Case 3:  R ≡ r2 + q3 = 0,  r ≠ 0   ⇔    two solutions equal the same real value 
This case implies that q < 0, r2 = −q3 = (−q)3, and |r/(−q)3/2| = 1.  The sign of r/(−q)3/2 is 
the same as the sign of r.  If r > 0, then r/(−q)3/2 = 1, and the Figure 1 cubic-equation 
algorithm, Case 2, shows that θ = Cos−1(1) = 0, φ1 = 0, φ2 = −2π/3, φ3 = 2π/3, and  

 t1 = 2�−q    and    t2 =  t3  = −�−q              (R ≡ r2 + q3 = 0, r > 0). (23) 

If r < 0, then r/(−q)3/2 = −1, and the calculation becomes θ = Cos−1(−1) = π, φ1 = π/3, 
φ2 = −π/3, φ3 = π, and  

 t1 = t2 = �−q    and    t3  = −2�−q               (R ≡ r2 + q3 = 0, r < 0). (24) 

Whether r is positive or negative, all three solutions are real, and two of them equal the 
same real value. 
 
Case 4:  r = 0,  q ≠ 0 
If r = 0, then the depressed cubic equation (4) reduces to tn3  + 3q tn = (tn2  + 3q) tn = 0.  The 
solutions for tn are 0 and  ± �−3q. 

 t1 = 0, t2 = i �3q, t3 = −i �3q (r = 0,  q > 0) (25) 

 t1 = �−3q, t2  =  0, t3 =  −�−3q, (r = 0,  q < 0) (26) 
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Preliminary Logic Structure for the Round-Off Error Mitigation Design 
The preliminary logic structure for the mitigation design combines the Numerical Recipes 
quadratic-equation method [3, §5.6], the Figure 1 cubic-equation algorithm, and the Figure 
2 quartic-equation algorithm with the Figure 3 special cases. 

Quadratic-Equation Algorithm 
We start with the quadratic-equation algorithm, Figure 4, which is needed by the cubic-
equation algorithm for Special Case 1 (a0 = 0) and by post processing for both cubic and 
quartic equations.  The two solutions Z1 = X1 + iY and Z2 = X2 − iY of the quadratic equation  
Zn2 + B Zn + C = 0 are calculated so that Z1 is the greater of two real solutions or has the 
positive imaginary part when solutions are a complex conjugate pair.  This convention 
simplifies the calculation logic in the cubic- and quartic-equation algorithms.  The quadratic 
equation has its own special case when the constant coefficient C is 0.  Then solution Z1 = 
X1 is the greater of the two solutions, 0 and −B. 
 
Figure 4   Preliminary Calculation Logic for Solving the Quadratic Equation 

 
 

Inputs: Real coefficients B and C of the quadratic equation Zn2 + B Zn + C = 0 
Outputs: X1,  X2 , Y so that Z1 = X1 + iY  and Z2 = X2 − iY imply that  Z2 +BZ+ C  = (Z − Z1)(Z − Z2) for 

all Z.  Thus, Z1 and Z2 are the two solutions of the quadratic equation.  By convention, 
solution Z1 is the greater of two real solutions or has the positive imaginary part when 
solutions are a complex conjugate pair. 

B, C 

B ≥ 0 

C = 0 

B > 0 

Y = 0 
 

X1 = −B 
X2 = 0 
  

X1 = 0 
X2 = −B 
  

D > 0 

X
1
 = −B/2 

X
2
 = X

1
 

Y = �|D| / 2 

False True 

X
1
 = −C/Q 

X
2
 = −Q 

X
1
 = Q 

X
2
 = C/Q 

D = B2 − 4C 
 

Y = 0 
Q =(|B| +√D)/2 

False True 

False True 

False True 

Numerical  
Recipes 

  

X1 , X2 , Y 



Define Special Cases 

9/24/2021  Page 13 of 136 

If C ≠ 0, then the algorithm calculates the discriminate D ≡ B2 − 4C.  The quadratic formula 
is used only for D ≤ 0. 

QUADRATIC FORMULA 

 Z1 = 1
2
�−B +  √D�         Z2 = 1

2
�−B − √D�,         D ≡ B2 − 4C (27) 

 
If D > 0, the formula is avoided because it unnecessarily introduces round-off error into the 
solution of smaller magnitude.  Let XA and XB be the solutions of greater and smaller 
magnitude respectively.  Then. 

 |XA| = Q ≡  1
2
�|B| +  √D�       >        |XB| = 1

2
�|B| − √D� (28) 

If B2 >> 4C > 0, then √D = √B2 − 4C  ≈ |B|.  The calculated difference |B| − √D and 
resulting XB become less accurate as  4C / B2 decreases. 
 
The algorithm’s Numerical Recipes approach for D > 0 avoids this problem by using the 
relationships B = −(Z1 + Z2) = −(X1 + X2) = −(XA + XB) and C = Z1 Z2 = X1 X2 = XA XB.  If 
B < 0, then 

X1 = XA =  1
2
�−B + √D� = 1

2
�|B| + √D�  =    Q  and X2 = XB = C/XA =   C/Q    (B < 0). (29) 

Otherwise,  

X2 = XA =  1
2
�−B − √D� = − 1

2
�|B| +  √D� = − Q  and X1 = XB = C/XA = −C/Q    (B ≥ 0). (30) 

Cubic-Equation and Quartic-Equation Algorithms 
Figures 5 and 6 show the preliminary logic structure for the cubic-equation and quartic-
equation algorithms.  Figure 5 combines the Figure 1 cubic-equation algorithm with Figure 
3 special cases 1 to 4.  Figure 6 combines the Figure 2 quartic-equation algorithm with 
special cases 5 and 6. 
 
Cubic-Equation Special Case 1 (a0 = 0), shown in the Figure 5 dotted yellow box, requires 
some extra logic.  One solution is zero and the other two are the solutions Z1 = X1 + iY and 
Z2 = X2 − iY of the quadratic equation Zn2  + a2 Zn+ a1 = 0.  The quadradic-equation algorithm 
assures that X1 ≥ X2.  If the quadratic-equation solutions are complex conjugates, then the 
cubic-equation solutions are assigned z1 = 0, z2 = Z1, and z3 = Z2.  Otherwise, z1, z2, and z3 
are all real, and the extra logic assigns their values to comply with the convention: 

z1   ≥   z2 = x2   ≥   z3 = x3. 
 
The following two sections add error-mitigation calculations to the quadratic-, cubic-, and 
quartic-equation algorithms of Figures 4, 5, and 6.  However, the overall logic structure of 
the algorithms remains unchanged. 
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 Figure 5   Preliminary Calculation Logic for Solving the Cubic Equation  
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 Figure 6   Preliminary Calculation Logic for Solving the Quartic Equation 

 
 

Inputs: Real coefficients A3, A2, A1, and A0 of the quartic equation Zn4 + A3Zn3 + A2Zn2 + A1Zn + A0 = 0 

Outputs:  X1, X2, Y1, X3, X4, Y3 so that Z1=X1+iY1, Z2=X2−iY1, Z3=X3+iY3, Z4=X4−iY3 are its four solutions. 
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Figure 6   Preliminary Calculation Logic for Solving the Quartic Equation  (Page 2) 
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IV. ALGORITHMS WITH MITIGATION FOR MULTIPLICITY CONDITION 

This section addresses the multiplicity condition (two or more equation solutions equal the 
same real value).  It shows how multiplicity magnifies solution round-off error, and then it 
eliminates the problem by introducing new calculations into the Section III algorithms.  The 
algorithms for solving quadratic, cubic, and quartic equations take their final form.  
Demonstrations using Examples 1 and 2 from Table I above show how the mitigation 
calculations work.   The mitigation technique for multiplicity also addresses the quartic-
equation symmetry condition as demonstrated using Table I, Example 3.  The presentation 
also explains why the Equation (round-off error mitigation design for quartic equations is 
based on the modified Euler algorithm rather than an alternative quartic-equation 
algorithm. 
 
Figure 7 shows how multiplicity magnifies the solution round-off error.  Figures 7-1 and 
7-2 plot the cubic and quartic functions for the two example multiplicity equations in Table 
I, Section I.  The function intersects the horizontal-axis at solution values.  If the function 
has zero slope (zero first derivative) at the intersection point, then the solution is a 
multiple solution.  At the intersection, if the function has both a zero slope and a point of 
inflection as in Figure 7-2, then the first two derivatives are zero, and the multiplicity is at 
least 3. 
 
For any of the figure’s multiple solution values, any small error in the function’s vertical 
position produces a much greater error in the intersection location.  That is, a small round-
off error in the function value produces a magnified solution error.   
 
The error analysis beginning in Section VII shows that magnification of residual solution 
error is an inherent feature of multiplicity.  Calculated solutions for most simple solutions 
have maximum relative errors on the order of ε = 2−52 ≈ 2.22×10−16, the computer’s 
maximum relative storage error.  However, maximum relative error is on the order of 
ε1/2 ∼ 10−8 for multiplicity 2 solutions and the order of ε1/3 ∼ 10−5 for multiplicity 3 
solutions.  See Examples 1 and 2 in Table I of Section I. 
 
Our approach to mitigating this type of error magnification is to anticipate and 
accommodate the multiplicity condition. 
 
Section III above has already described the first major feature of our error-mitigation 
design: incorporating logic for the Figure 3 special cases into our solution-calculation 
algorithms.  Each special case is defined by a zero value for some calculated parameter.  A 
cubic equation with q = r = 0 indicates a multiplicity of 3.  Multiplicity 3 quartic equations, 
like Example 2, have a multiplicity 3 resolvent cubic equation.  A cubic equation with q < 0 
and R ≡ r2 + q3 = 0 has a multiplicity of 2. 
 
This section adds the remaining major feature to mitigate multiplicity error magnification.  
For each of the special-case, zero-value parameters (e.g. r, q, R), we calculate a reasonable 
upper bound for its round-off error.  The parameter R, for example, will have an upper-
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bound error RE ε, where RE is described below.  The RE value satisfies RE ≥ |R|.  The 
computer’s epsilon value ε = 2−52 is stored as a universal constant of the mitigation design.  
If the absolute value of the calculated parameter is less than the upper-bound error, then 
the parameter is reset to zero.   For example, if |R| < RE ε, then R is reset to 0. 
 
This approach assures that if multiple true solutions equal the same real value, then the 
corresponding calculated values also equal a common real value.  Any residual round-off 
error in the calculated equal solutions is of the order of ε, not ε1/2 or ε1/3. 
 
 Figure 7 Cubic and Quartic Functions for Examples 1 and 2 

 

0 

function uncertainty 

produces a much greater uncertainty 
in the multiple solution values.  

The shallow slope of 
the function curve implies that a small 

Fig 7-2  Example 2 Quartic Function 
P(Z) = Z4 − 4.2 Z3 + 6.6 Z2 − 4.6 Z + 1.2 
 = (Z − 1.2)(Z − 1)3 

Fig 7- 1  Example 1 Cubic Function 
p(z) =  z3 − 5z2 + 8 z − 4 
 = (z − 2)2 (z − 1) 

p(z) 

0 

0.2 

− 0.2 
1 2 0 3 z 

P(Z) 

0 

Z 



Algorithms with Mitigation for Multiplicity Condition 

9/24/2021  Page 19 of 136 

Multiplicity Error Mitigation in the Quadratic-Equation Algorithm 
The mitigation design adds some simple calculations into the preliminary quadratic-
equation algorithm, Figure 4, to address round-off error magnification for the multiplicity 
condition.  The equation Zn2 + B Zn + C = 0 has solutions (−B ± √D)/2 where D is the 
discriminate D ≡ B2 − 4C = 0.  When D = 0, then the equation has two equal solutions 
Z1 = Z2 = X1 = X2 = −B/2. 
 
Suppose the true D value is zero, but D is calculated as a round-off error of 
δD = ±B2 × 10−16.  Then the calculated solutions become 

−(B/2)(1 ± √±10−16) =    −(B/2)(1 ± 10−8)   OR   −(B/2)(1 ± i 10−8) 

depending on the sign of δD.  For the multiplicity condition, the discriminants relative error 
of 10−16 produces the magnified error of 10−8 in the solution. 
 
The mitigation design addresses this situation by calculating a reasonable upper bound for 
the round-off error |δD| in D.  Because D is the calculated value D = B2 − 4C, we model the 
error δD as a function of the error δB in B and error δC in C by using the partial derivatives 
∂D/∂B = 2B and ∂D/∂C = − 4: 

δD  =  
∂D
∂B

δB +
∂D
∂C

δC = 2B δB − 4 δC . 

The true error contributions of B and C may either reinforce or cancel each other 
depending on their signs.  For this purpose, we want an upper bound of |δD|, so we take the 
error contributions from B and C as reinforcing each other. 

|δD|max   =  �
∂D
∂B
� |δB|max + �

∂D
∂C
� |δC|max = 2|B| |δB|max + 4 |δC|max 

 
Coefficients B and C may be supplied by the user to solve a quadratic equation, or they may 
be supplied by the cubic-equation or quartic-equation algorithm or a post-processing 
algorithm.  For now, assume that B and C are user inputs.  Then the worst-case errors 
|δB|max and |δC|max are just the computer’s one-bit storage errors for B and C.  That is, 

|δB|max = |B|ε   and  |δC|max = |C|ε   ⇒   |δD|max = ��
∂D
∂B
� |B| + �

∂D
∂C
� |C|� ε 

 
Each of the error upper bounds |δB|max, |δC|max, and |δD|max is the product of a positive error 
size parameter times ε.  These size parameters are given the corresponding label with the 
subscript E.  Thus, BE, CE, and DE are the error size parameters for B, C, and D, and 
 
 |δB|max = BE ε       |δC|max = CE ε       |δD|max = DE ε (31) 
 
where     BE = |B|,      CE = |C|,    and (32) 

DE = �
∂D
∂B
�BE + �

∂D
∂C
�CE    =    2|B|BE + 4CE                                         (33) 
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The value |δD|max = DE ε is the upper bound of round-off error |δD| that we seek in 
order to provide error mitigation in the quadratic-equation multiplicity condition.  
The mitigation design includes the following three changes to the quadratic-
equation algorithm of Figure 4. 

• The computer’s epsilon value ε = 2−52 is stored as a universal constant. 

• In addition to the coefficients B and C, the input values include the error size 
parameters BE and CE.  If B and C are user inputs, then set BE = |B| and 
CE = |C|.  Otherwise, BE and CE are calculated and supplied by a higher-level 
algorithm. 

• The following two calculation lines are included in the algorithm 
immediately following the calculation of determinate D = B2 − 4C: 

o DE = 2|B| BE + 4CE 

o If  |D|  <  DE  ε  then D = 0 
 
Figure 8 shows the final quadratic-equation algorithm.  This mitigation design 
assures that two true equal real solutions are calculated accurately as two equal real 
solutions.  Any residual round-off error is not magnified. 
 
The mitigation design for the cubic- and quartic-equation algorithms requires the 
calculation of several additional error size parameters like BE, CE, and DE.  Equations (31) to 
(33) serve as models for the way these size parameters are used and calculated.  If some 
value L is a user input, then the associated error size parameter is LE = |L| as in (32).  If L is 
calculated, then LE is calculated using the appropriate partial derivatives as in (33).  If the 
cubic- or quartic-equation algorithm invokes the quadratic-equation algorithm, then the 
higher-level algorithm calculates BE and CE by employing appropriate partial derivatives as 
shown below. 
 
Multiplicity Error Mitigation in the Cubic-Equation Algorithm 
Figure 9 provides the final calculation algorithm for solving the cubic equation.  It updates 
the preliminary calculation logic of Figure 5 with the calculations needed to prevent round-
off error magnification for the multiplicity condition.  The computer’s epsilon value ε = 2−52 
is stored as a universal constant. 
 
The input list for Figure 9 includes not only the cubic-equation coefficients a2, a1, and a0, 
but also the corresponding error size parameters a2E, a1E, and a0E.  The coefficients may be 
supplied by the user to solve a cubic equation, or they may be supplied by the quartic-
equation algorithm or its post-processing algorithm.  If a2, a1, and a0 are user inputs, then 
a2E, a1E, and a0E are the corresponding absolute values: 

 a2E = |a2|              a1E = |a1|                   a0E = |a0|. (34) 
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Otherwise, the higher-level algorithm calculates and supplies values for all of the cubic 
algorithm inputs:  a2, a1, a0, a2E, a1E, and a0E. 
 
Figure 8   Final Calculation Algorithm for Solving the Quadratic Equation 
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Figure 9   Final Calculation Algorithm for Solving the Cubic Equation 
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Figure 9   Final Calculation Algorithm for Solving the Cubic Equation (Page 2) 

 
 
If a0 = 0, then Special Case 1 applies.  One solution is 0, and the other two are solutions of 
the quadratic equation zn2 + a2 zn+ a1 = 0.  To find these two solutions, the cubic-equation 
algorithm invokes the Figure 8 quadratic-equation algorithm with the following input 
values: 

B = a2,    C = a1,     BE = a2E,     CE = a1E. 
 

                                           SPECIAL CASES 
3. R ≡ r2 + q3 = 0, r ≠ 0 (two equal real solutions) 
4. r = 0, q ≠ 0 (solutions are evenly distributed) 

R = 0 

y2 = 0, 
s = �−q 

True 

False 

r > 0 
True 

False 

t1 = t2x = s 
t3x = −2s 

t1 = 2s 
t2x = t3x = −s 

z1 = t1 − a2/3,      x2 = t2x − a2/3,      x3 = t3x − a2/3 

A = �|r| + √R�
1/3

 

t1 =  �
A − q/A    if  r ≥ 0⬚⬚

q/A − A    if  r < 0⬚⬚ 

t2x = t3x = −t1/2 

y2 =
√3
2
�A +

q
A
� 

r = 0 
True 

False 

s = �|3q| 

q > 0 
True False 

y2 = s 
t1 = t2x = t3x = 0 

y2 = t2x = 0 
t1 = s,  t3x = −s 

R > 0 
True 

False 

z1, x2, x3, y2 

Viète 

A 
  

Numerical 
Recipes 

θ =  �
0                                                                 if  q =  0
Cos−1�Max{Min[r/(−q)3/2, 1], −1}�  if  q <  0 

φ1 = θ/3     φ2 = φ1 − 2π/3      φ3 = φ1 + 2π/3 

t1 = 2 �−q  cos φ1     t2x  = 2 �−q  cos φ2 

t3x  = 2 �−q  cos φ3          y2 = 0 

  

Cubic Equation Post 
Processing 
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If a0 ≠ 0, then the mitigation design calculates error size parameters qE, rE, and RE 
corresponding to q, r, and R: 

q = a1/3 − a22/9,         r = (a2a1 − 3a0)/6 − a23/27,         R = r2 + q3. 
It uses inputs a2E, a1E, and a0E and the appropriate partial derivatives: 

∂q ∂a1⁄ = 1 3⁄ ,                        ∂q ∂a2⁄ = −2a2 9⁄  

∂r ∂a2⁄ = a1 6⁄ − a22 9⁄ ,            ∂r ∂a1⁄ = a2 6⁄ ,             ∂r ∂a0⁄ = −1 2⁄  

∂R ∂r⁄ = 2r,              ∂R ∂q⁄ = 3q2 . 
 
Values for qE, rE, and RE are calculated using the following formulas. 
 

 qE = �∂q
a1
�a1E +  �∂q

a2
�a2E   =   

a1E
3

+  2|a2|a2E
9

 (35) 

 

 rE = �∂r
a2
�a2E + �∂r

a1
�a1E + �∂r

a0
�a10E   =   �a1

6
− a22

9
�a2E + |a2|a1E

6
+ a0E

2
 (36) 

 

 RE = �∂R
∂r
�rE +  �∂R

∂q
�qE   =   2|r|rE + 3q2qE (37) 

 
If the absolute value of q, r, and/or R are sufficiently small, then the value is reset to zero 
according to the following tests.  

If |q| < qE ε, then   q = 0. 

If |r| < rE ε, then   r = 0. 

If |R| < RE ε, then   {R = 0  and  if (q ≥ 0 or r = 0) then q = r = 0}. 
 
This last line of logic is necessary to prevent round-off error from creating an illogical 
situation in which R = r2 + q3 = 0 and either r = 0 or q = 0, but not both.  Also note that  
q cannot be positive if R = 0. 
 
These logical tests involving qE ε, rE ε, and RE ε assure that the calculated value of q, r, 
and/or R is set to 0 whenever the corresponding true value is 0.  If the cubic equation has 
multiple true solutions equal to the same real value, then the corresponding calculated 
solutions also equal a common real value. 
 
If either Special Case 1 (a0 = 0) or Special Case 2 (q = r = 0) apply, then cubic-equation 
post processing is not required.  The Figure 9 algorithm exits immediately after output of 
the solution values z1, x2, x3, y2.  Special Case 1 needs no post processing because it uses the 
Figure 8 quadratic-equation algorithm, whose Numerical Recipes design accurately 
calculates any nonzero solutions regardless of any differences in their magnitudes.  Special 
Case 2 needs no post processing because it has three equal solutions; there are no 
differences in magnitude to create solution-error magnification. 
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Page 2 of Figure 9 shows the remainder of the algorithm for cubic-equation cases other 
than Special Cases 1 and 2.  This portion of the algorithm is unchanged from the Figure 5 
preliminary algorithm except for the indication of post processing at completion.  
 
Table III below shows calculated parameters for the Example 1 cubic equation 
zn3 − 5 zn2 + 8 zn− 4 = 0.  The table compares calculations of the Figure 1 algorithm without 
round-off error mitigation to those of Figure 9 with mitigation.  The equations true 
solutions are 2, 2, and 1.  The true values of r and q are r = −1/27 and q = −1/9, so the true 
value of R is R = r2 + q3 = 0.  
 
Both algorithms calculate R as a round-off error R = δR = 1.04083×10−17. 
 
Because the calculated R is positive, the original Figure 1 algorithm uses Numerical Recipes 
to complete the calculation, starting with the calculation of A. 

A = �|r| + √R�
1/3

 = �|r| + √δR�
1/3

 

With true values r = −1/27 and R = 0, the true value of A is 1/3.  The erroneous calculated 
R value δR produces an error δA in A given by 

δA = �|r| + √δR�
1/3

− |r|1/3  =  |r|1/3 ��1 + √δR/|r|�
1/3

− 1�  ≈  |r|1/3 � 1
3 √δR/|r|�  = 3√δR 

where |r| = 1/27.  Taking the square root of δR in the A formula greatly magnifies the 
error: δA ≈ 3√δR = 9.678588×10−9.  To a first approximation, the error δA cancels itself out 
in the subtraction t1 = q/A − A.  The values tx2 = tx3 = −t1/2, z1, x2, and x3 are therefore 

unaffected by δA.  The true y2 value is 0, but the sum in the calculation y2 = √
3
2

 (A + q/A) 
has the true value of A cancel itself out while the error δA is doubled: 
calculated A + q/A =  A+δA + q/(A + δA) = A+δA + (q/A)[1/(1+δA/A)] 

 ≈  A+δA + (q/A)(1− δA/A)  =  A+q/A + δA(1−q/A2) 

 =  1/3 + (−1/9)/(1/3) + δA[1−(−1/9)/(1/3)2]  

calculated A + q/A =  2δA 

calculated y2  =  √
3
2

 (calculated A + q/A)  =  √3 δA  = 3 √3δR  =  3√3×1.04083×10−17 

calculated y2  = 1.676381×10−8 

 
The final algorithm, Figure 9, avoids this magnified error.  After calculating R, it calculates 
RE = 1.481481481 via equations (34) to (37).  Because |R| = 1.04083×10−17 < RE ε = 
3.28955×10−16, the algorithm resets R to 0 and invokes Special Case 3 to calculate the 
correct solutions.  
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Table III.   Calculated Parameters for Example 1 Cubic 
Equation with Multiplicity 2 

Example 1 Cubic Equation:   zn3  − 5 zn2  + 8 zn− 4 = 0 
with solutions 2, 2, and 1 

Parameter 
Symbol 

Figure 1 Cubic-Equation 
Algorithm 

(Value without error 
mitigation) 

Figure 9 Final 
Algorithm 

(Value with error 
mitigation) 

ε  ε = 2−52 =  
2.2204460E-16  

a2 -5 -5 
a1 8 8 
a0 -4 -4 
a2E  5 
a1E  8 
a0E  4 
a0 = 0 FALSE FALSE 
q -0.111111111 -0.111111111 
qE  8.222222222 
|q| < qE ε  FALSE 
r -0.037037037 -0.037037037 
rE  15.88888889 
|r| < rE ε  FALSE 
R = r2 + q3 1.04083E-17 1.04083E-17 
RE  1.481481481 
|R| < RE ε  TRUE 
R reset  0 
q≥0 Or r=0  FALSE 
R = 0  TRUE 
 Numerical Recipes 

r2 + q3 > 0 
Special Case 3 

 R = 0,  r ≠  0 
A 0.333333343  
t1 -0.666666667 0.333333333 
t2x 0.333333333 0.333333333 
y2 1.676381E-08 0 
t3x 0.333333333 -0.666666667 
z1 1 2 
x2 2 2 
y2 1.676381E-08 0 
x3 2 1 

 
It is possible for the mitigation design to calculate two solutions as equal to each other 
when the corresponding true solutions of the cubic equation differ from each other by a 
very small relative value.  Such a near-miss cubic equation has little practical significance 
because the coefficients would require extreme precision.  Section X addresses this 
situation in detail, but for now consider the following example. 
 
We modify the Example 1 cubic equation zn3 − 5 zn2 + 8 zn− 4 = 0 (true solutions 2, 2, and 1) 
by decreasing the constant coefficient from  − 4 to −4.00000000000001, a change of 
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1×10−14.  The calculated R value decreases from 1.04083×10−17 to the new value 
R = −3.8×10−16 so that |R| = 3.8×10−16 > RE ε = 3.3×10−16.  The calculated R keeps its 
negative value, and the algorithm correctly reports the two different solution values of 
about 2.0000001 and 1.9999999 (2 ± 1×10−7).  Only if the constant coefficient −4 changes 
by a nonzero magnitude less than 1×10−14 does the calculated |R| become small enough that 
R is incorrectly reset to zero, and the algorithm produces the multiplicity result: 2, 2, 1. 
 
Multiplicity Error Mitigation in the Quartic-Equation Algorithm 
Figure 10 revises the Figure 6 quartic-equation calculation logic similar to the way that 
Figure 9 revises the Figure 5 cubic-equation calculation logic.  Figure 10 updates the 
preliminary calculation logic with calculations to address round-off error magnification in 
the multiplicity condition.  The computer’s epsilon value ε = 2−52 is stored as a universal 
constant. 
 
Figure 10 uses the same inputs as Figure 6: the four quartic-equation coefficients A3, A2, A1, 
A0.  The corresponding error size parameters are calculated immediately as the absolute 
values. 
 A3E = |A3|,              A2E = |A2|,              A1E = |A1|                   A0E = |A0| (38) 
 
If A0 = 0, then Special Case 5 applies (dashed blue box).  One solution, Z1 = X1+iY1, is zero, 
and the other three are solutions of the cubic equation Zn3  + A3 Zn2+ A2Zn + A1 = 0.  To find 
them, the algorithm invokes the Figure 9 cubic-equation algorithm with the following input 
values: 

a2 = A3,     a1 = A2,     a0 = A1,     a2E = A3E,     a1E, = A2E,     a0E = A1E. 
 
If A0 ≠ 0, then Figure 10, like Figure 6, calculates 

C   = A3 / 4,        b2 = A2 − 6C2,              b1 = A1 − 2A2C + 8C3,         b0 = A0 − A1C + A2C2 − 3C4. 
The mitigation design also calculates the corresponding error size parameters CE, b2E, b1E, 
and b0E.  These are derived in the usual way from A3E, A2E, A1E and A0E. 

CE = �
dC

dA3
�A3E   =   

A3E

4
                                                                                                                         (39) 

b2E = �
∂b2
∂A2

�A2E + �
∂b2
∂C

�CE   =   A2E + 12|C|CE                                                                               (40) 

b1E = �
∂b1
∂A1

�A1E + �
∂b1
∂A2

�A2E + �
∂b1
∂C

�CE   =      A1E + 2|C|A2E + |−2A2 + 24C2|CE              (41) 

b0E = �
∂b0
∂A0

�A0E + �
∂b0
∂A1

�A1E + �
∂b0
∂A2

�A2E + �
∂b0
∂C

�CE  

b0E =   A0E + |C|A1E + C2A2E + |−A1 + 2A2C − 12C3|CE                                                           (42) 
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Figure 10   Final Calculation Algorithm for Solving the Quartic Equation 

Universal Constant:  ε = 2−52 ≈ 2.22×10−16 

Inputs: Real coefficients A3, A2, A1, and A0 of the quartic equation Zn4 + A3Zn3 + A2Zn2 + A1Zn + A0 = 0 

Outputs:  X1, X2, Y1, X3, X4, Y3 so that Z1=X1+iY1, Z2=X2−iY1, Z3=X3+iY3, Z4=X4−iY3 are its four solutions. 

Cubic-Equation Algorithm, Figure 9 
Inputs: a2 = A3,  a1 = A2,  a0 = A1, 

 a2E = A3E,  a1E, = A2E,  a0E = A1E 

Outputs: X2 = z1,  X3 = x2,  X4 = x3,  Y3 = y2 

X1 = Y1 = 0 Special Case 5: A0 = 0 
At least one solution 
equals 0. 

A 
 

a2 = b2/2, a2E = b2E/2 

a1 = (b22 − 4b0)/16, a1E = |b2| b2E/8 + b0E/4 

a0 = − b12/ 64, a0E = |b1| b1E/32 

b1E_W = 0 

If  b2 < 0  Then 
 If  |a1/b22| < 1×10−8  Then  b1E_W = −b2 �−b2/2 
End If 
If |b1| < Max(b1E, b1E_W) ε  Then 
 b1 = 0,    a0 = 0      (Symmetry) 
 If |a1| < a1E ε  Then 
  a1 = 0     (Symmetry and Multiplicity) 
  If |a2| < a2E ε  Then  a2 = 0  (Multiplicity 4) 
 End If 
End If 

Test for quartic 
equation symmetry 

C   = A3 / 4,    CE = A3E/ 4 

b2 = A2 − 6C2, b2E = A2E + 12|C|CE 

b1 = A1 − 2A2C + 8C3,  

b1E = A1E + 2|C|A2E + | −2A2 + 24C2 | CE 

b0 = A0 − A1C + A2C2 − 3C4 

b0E = A0E + |C|A1E + C2 A2E + | −A1 + 2A2C − 12C3 | CE 

A0 = 0 
True False 

A3E = |A3|    A2E = |A2|    A1E = |A1|     A0E = |A0| 

A3, A2, A1, A0 

|b0| < b0E ε 

False 

True 

Cubic-Equation Algorithm, Figure 9 
Inputs: 
 a2 = 0, a1 = b2 , a0 = b1 , 

 a2E = 0, a1E = b2E , a0E = b1E 

Outputs: 

Tx2 = z1,  Tx3 = x2,  Tx4 = x3,  Y3 = y2 

Tx1 = Y1 = 0 

Special Case 6: b0 = 0 
At least one depressed 
solution equals 0. 

B 
  

X1, X2, Y1, X3, X4, Y3 

No quartic-equation 
post processing 

EXIT 
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Figure 10   Final Calculation Algorithm for Solving the Quartic Equation (Page 2) 

 
The algorithm tests for Special Case 6, b0 = 0, by testing whether |b0| < b0E ε, that is, 
whether the calculated |b0| is less than the upper bound of its round-off error.  If so, then b0 
is assumed to be 0, and Special Case 6 applies (dashed green box).  One depressed solution, 
T1 = Tx1+iY1, is zero, and the other three are solutions of the cubic equation 
Tn3 + b2Tn + b1 = 0. 

Y1 = sD 

Tx1 = sz1 
Tx2 = Tx1 

Y1 = 0 
Tx1 = sz1 + sD 
Tx2 = sz1 − sD 

Y3 = sD 

Tx3 = −sz1 
Tx4 = Tx3 

Y3 = 0 
Tx3 = −sz1 + sD 
Tx4 = −sz1 − sD 

 X1 = TX1 − C        X2 = TX2 − C        X3 = TX3 − C        X4 = TX4 − C 

X1, X2, Y1, X3, X4, Y3 

D < 0 
False True True False 

D < 0 

D = x2 + x3 − 2Σ√d 
sD = �|D| 

D = x2 + x3 + 2Σ√d 
sD = �|D| 

If b1 > 0, then Σ = 1;  Else Σ = −1 
d = x2x3 + y2y2          sz1 = √z1 

If    z1 < 0 Then z1 = 0. 
If  x2x3 < 0 Then 
   If  x2 > −x3  Then  x3 = 0;  Else  x2 = 0. 

B 
  

A 
  

Solve Resolvent 
Cubic Equation 

Special Case 6: 
b0 = 0 
 

Quartic-Equation Post Processing 

Cubic-Equation Algorithm, Figure 9 
Inputs: a2, a1, a0, a2E, a1E, a0E 

Outputs: z1, x2, x3, y2 
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To find these other three depressed solutions, the algorithm invokes the Figure 9 cubic-
equation algorithm with the following input values: 

a2 = 0,     a1 = b2,     a0 = b1,     a2E = 0,     a1E, = b2E,     a0E = b1E. 
 
If Special Case 6 does not apply, the algorithm calculates resolvent-cubic-equation 
coefficients a2, a1, and a0 and their corresponding error size parameters a2E, a1E, and a0E. 

a2 = b2/2,           a1 = (b22 − 4b0)/16,         a0 = − b12/ 64 

a2E = �
da2
db2

�b2E   =   
b2E

2
                                                                                                                        (43) 

 

a1E = �
∂a1
∂b2

�b2E + �
∂a1
∂b0

� b0E  =   
|b2|b2E

8
+

b0E
4

                                                                               (44) 

 

a0E = �
da0
db1

� b1E   =   
|b1|b1E

32
                                                                                                                  (45) 

 
Additional calculations, shown in the dashed red box, are required for the quartic equations 
with symmetry or its near miss.  

Quartic Equations with Symmetry or Its Near Miss  
Our usual method of detecting Special Case 1, a0 = 0, in the resolvent cubic equation can fail 
for quartic equations with a combination of symmetry (or its near miss) and multiplicity 
(or its near miss).  The following discussion shows how the calculations in the red box 
address this situation.  
 
The case a0 = 0 in the resolvent cubic equation implies symmetry in the quartic equation.  
If a0 = 0, then b1 = 0 because a0 = − b12/ 64, Equation (13).  The value b1 is the linear 
coefficient in the depressed quartic equation, Tn4 + b2Tn2 + b1Tn + b0  =  0, Equation (9).  The 
case a0 = b1 = 0 reduces the depressed quartic equation to 

Tn4 + b2Tn2 +  b0  =  0. 
 
This is a quadratic equation in Tn2.  The quartic equation’s four depressed solutions Tn are 
the four values 

 ±��−b2 ± �b22 − 4b0 � 2⁄  . 

The negative of every depressed solution Tn is itself a depressed solution.  The four Tn and 
the depressed quartic polynomial PT(T) = T4 + b2T2 + b0 = PT(−T) are symmetric about 
T = 0.  The four quartic-equation solutions Zn = Tn − C are symmetric about Z = −C.  Thus, 
Special Case 1 (a0 = 0) for the resolvent cubic equation corresponds to symmetry in the 
quartic equation: b1 = 0 and PT(T) = PT(−T). 
 
The mitigation design’s normal approach to detect this symmetry is to reset b1 and a0 to 0 if  
|b1| < b1E ε, but this approach fails for a type of quartic equation that has both symmetry (or 



Algorithms with Mitigation for Multiplicity Condition 

9/24/2021  Page 31 of 136 

its near miss) and multiplicity (or its near miss).  The quartic equation has the four 
depressed solutions  

 T1 = T0,         T2 = T0,          T3 =  −T0 + ∆T,         T4 =  −T0 − ∆T         where |∆T| << T0. (46) 

The quartic equation solutions are Zn = Tn − C, and the quartic equation coefficients are 
given by check Equations (14) to (17): 

 A3 = 4C A2 = − 2T02 + 6C2 − ∆T2 (47) 

 A1 = −4C(T02 − C2) + 2(T0 − C) ∆T2 A0 = (T02 − C2)2 − (T0 − C)2 ∆T2. (48) 

The check equations applied to the depressed solutions in (46) give the depressed quartic 
equation coefficients: 

 b2 = − 2T02 − ∆T2 b1 = 2T0 ∆T2 b0 = T02 (T02 − ∆T2). (49) 

Note that these expressions for the bn are the same as those for the corresponding An with 
C set to zero.  Apply Equations (38) and (39) for the error size parameters A1E, A2E, and CE 
to Equation (41) for b1E: 
 b1E = |A1| + 2|C||A2| + |−2A2 + 24C2||C| . (50) 
 
The problem of using |b1| < b1E ε to detect symmetry becomes evident by examining the 
special case ∆T = A3 = C = 0.  The resulting quartic equation has symmetry and two double 
solutions: T1 = T2 = T0 and T3 = T4 = −T0.  With ∆T = 0, Equation (49) gives b1 = 0.  The 
problem is that Equations (47), (48), and (50) imply that b1E = 0.  An incremental change 
in C from 0 leaves b1 = 0 and produces only an incremental increase in b1E.  That small 
increase cannot assure that b1E ε exceeds the round-off error in the calculated b1 value. 
 
We need an effective, new, upper bound of the round-off error in calculated b1 for quartic 
equations that have both symmetry (or its near miss) and two double solutions (or near 
misses).  The value b1E ε is inadequate for that situation. 
 
To find that round-off error upper bound, examine the calculation of b1 from check 
Equation (20) where b1 replaces A1, Y1 = Y3 = 0, and the Xn become the depressed quartic-
equation solutions in (46):  T1 = T2 = T0,  T3 = −T0 + ∆T,  T4 = −T0 − ∆T. 

 b1  =  −[T1T2(T3+T4) + T3T4(T1 + T2)] 

 b1  =  −[T02 (− 2T02) + (T02 − ∆T2)(2T0)] 

Suppose ∆T2/T2 is very small.  A computer may calculate the difference (T02 − ∆T2) in this 
last expression simply as T02 and then calculate the resulting b1 as 0 if  

∆T2 < T02 ε. 

T02ε is the least significant bit value of the stored T02 value.  The true b1 per (49) is 
b1 = 2T0 ∆T2.  Thus, if |b1| = 2|T0| ∆T2  <  2|T03|ε,  then b1 might be calculated as zero.  The 
value 2|T03|ε is the one we seek for the upper bound of round-off error in calculated b1. 
 



Algorithms with Mitigation for Multiplicity Condition 

9/24/2021  Page 32 of 136 

The value |T0| in 2|T03|ε is not available to us in practice, so we estimate |T0| from the 
calculated value of b2 in (49): b2 = − 2T02 − ∆T2.  The assumption |∆T| << T0 implies that  
b2 ≈ − 2T02  and allows us to estimate |T0| as |T0| ≈ �−b2/2   and 2|T03| as  

2|T0|3 ≈ −b2�−b2/2     where    b2 < 0   and    |∆T| << T0. 

We show later how we assure that |∆T| << T0 for these calculations. 
 
When the quartic equation has both symmetry (or its near miss) and two double solutions 
(or near misses), our new test for resetting b1 and a0 to zero becomes: 

 For b2 < 0  and  |∆T| << T0,  reset b1 and a0 to 0 if  |b1| < b1E_W ε  where 

 b1E_W = −b2�−b2/2. (51) 
 
If the resolvent-cubic-equation coefficients a1 and a0 both equal zero, then the quartic 
equation has both symmetry and multiplicity.  Show this by applying Equation (49) to 
Equation (12) for a1: 

a1  =  (b22 − 4b0)/16  =  [(− 2T02 − ∆T2)2 − 4T02 (T02 − ∆T2)]/16  =  (8T02∆T2 + ∆T4)/16 (52) 

When ∆T is zero, then so is a1. 
 
The algorithm assures that |∆T| << T0 when it applies the test |b1| < b1E_W ε for resetting b1 
and a0 to zero.  First it initializes b1E_W to 0.  If b2 < 0, it recalculates b1E_W = −b2�−b2/2 
only if  |a1/b22| < 1×10−8.  From Equations (49) and (52), this means that b1E_W = 0 unless 

�
a1
b22
� = �

(8T02∆T2 + ∆T4)/16
4T04 + 4T02∆T2 + ∆T4� ≈ �

∆T2

8T02
� < 1×10−8. 

Thus, b1E_W = 0 unless (∆T/T0)2 is less than about 8×10−8.  
 
At greater values of (∆T/T0)2 when |a1/b22| ≥ 1×10−8, b1E_W is no longer needed.  The value of 
b1E in Equation (50) is sufficiently great that b1E ε can fulfill its proper role as round-off 
error upper bound for b1. 
 
Notice that the computation in the red box of Figure 10 keeps the “If b2 < 0” and the 
“If |a1/b22| < 1×10−8 “ as separate lines.  Keeping them as separate lines of code is necessary 
to prevent a run-time error when b2 = 0. 
  
After the algorithm determines the value of  b1E_W, either 0 or −b2�−b2/2, it tests whether 
|b1| < Max(b1E, b1E_W) ε.  The maximum of b1E ε and b1E_W ε serves as the upper bound of 
round-off-error magnitude in the calculated b1.  If |b1| < Max(b1E, b1E_W) ε, the algorithm 
resets b1 and a0 to zero, indicating that the quartic equation is symmetric.  Also, if 
|b1| < Max(b1E, b1E_W) ε, the algorithm tests whether |a1| < a1E ε.  
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If |a1| < a1E ε, then the algorithm resets a1 to zero indicating that the quartic equation has 
multiplicity as well as symmetry.  Also, if  |a1| < a1E ε, the algorithm tests whether 
|a2| < a2E ε. 
 
If  |a2| < a2E ε, then a2 is reset to zero, which implies that all coefficients of the resolvent 
cubic equation are zero: a2 = a1 = a0 = 0.  This situation produces zero values for all three 
resolvent cubic equation solutions and all four depressed quartic equation solutions: 

z2 = z1 = z0 = T1 = T2 = T3 = T4 = 0. 

The four quartic equation solutions Zn = Tn − C, therefore, all equal the same real value 
(multiplicity 4): Z1 = Z2 = Z3 = Z4 = −C = −A3/4.  
 
This completes the Figure 10 calculations in the dashed red box for quartic equations with 
symmetry (or its near miss) and perhaps also multiplicity (or its near miss).  Calculation of 
a2, a1, a0, a2E, a1E, and a0E is complete, and the algorithm is ready to invoke the Figure 9 
cubic equation algorithm to solve the resolvent cubic equation. 
 
Page 2 of Figure 10 is the same as that of the preliminary quartic-equation algorithm, 
Figure 6, with the following exceptions.  The Figure 10 algorithm invokes the final cubic-
equation algorithm of Figure 9 rather than the preliminary cubic-equation algorithm of 
Figure 5.  At completion, the Figure 10 algorithm indicates the need for quartic-equation 
post processing. 
 
Selection of the Modified Euler Quartic-Equation Algorithm for the Mitigation Design 
The modified Euler quartic-equation algorithm is selected over alternative quartic-
equation algorithms for the mitigation design because it requires relatively few changes. 
 
Except for the if-statements in Figure 10’s dashed red box, the Euler quartic-equation 
algorithm needs no branches for the multiplicity condition because it uses all three 
solutions z1, z2, and z3 of its resolvent cubic equation.  Most other quartic-equation 
algorithms use only one solution.  Figure 11, described below, shows that multiplicity 
among the Euler resolvent-cubic-equation solutions zn corresponds to multiplicity among 
solutions Tn of the depressed quartic equation.  If the quartic equation has multiplicity, 
then the Figure 9 algorithm calculates resolvent-cubic-equation solutions with the 
appropriate multiplicity, which allows the normal Euler algorithm computation to produce 
quartic-equation solutions of the correct multiplicity. 
 
Figure 11 below summarizes the relationships between the depressed quartic equation, the 
Euler resolvent cubic equation, and their solutions for multiplicity and quartic-equation 
symmetry.  The figure’s first section shows the Depressed Quartic Equation (Equation (9)) 
with solutions Tn.  The Tn are related to solutions Zn of the quartic equation 

 Zn4  + A3Zn3 + A2 Zn2  + A1 Zn+ A0 = 0, n = 1, 2, 3, 4 

by  Tn = Zn + C ⇔ Zn = Tn  −  C      where      C = A3/4. 
Thus, any multiplicity among the Zn has a corresponding multiplicity among the Tn. 
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Figure 11   Relationships between the Depressed Quartic Equation, the Euler Resolvent Cubic 
Equation, and Their Solutions for Multiplicity and Quartic Symmetry 

Depressed Quartic Equation 
Tn4  + b2Tn2  + b1Tn + b0  =  0,     n = 1, 2, 3, 4                   T1 + T2 + T3 + T4 = 0 

Euler Resolvent Cubic Equation 
zn3  + a2 zn2  + a1 zn+ a0 = 0,            n = 1, 2, 3 

 where                     a2  =  b2/2,           a1  =  (b22 − 4b0)/16,          a0  =  − b12/ 64 

Properties of the Resolvent-Cubic-Equation Solutions 

Solution z1 is real.  Solutions z2 and z3 are real or they are a complex conjugate pair. 
z1 ≥ 0.    z2 z3 ≥ 0.    If z2 and z3 are real, then z1  ≥  z2  ≥  z3 

Thus, if  z2 and z3 are real, then either z1  ≥  z2  ≥  z3 ≥ 0  or  z1  ≥  0  ≥  z2  ≥  z3. 

Solutions of the Depressed Quartic Equation 
T1  =     √z1  +  √z2 − Σs �z3 

T2  =     √z1  −   √z2 + Σs �z3 

T3  =  − √z1  +  √z2 + Σs �z3 

T4  =  − √z1  −   √z2 − Σs �z3 

Σ = �    1    if b1 > 0
−1  otherwise

         s = �    1  if  √z2�z3 ≥ 0 
 −1        otherwise   

 

Multiplicity 2 Relations 

 z2 = z3,  Σs =    1 ⇔ T1 = T2  T1 = T2 =    √z1 
If z2 ≥ 0, T3 = −√z1 + 2√z2, T4 = −√z1 − 2√z2 

If z2 < 0, T3 = −√z1 + i2�|z2|, T4 = −√z1 − i2�|z2| 

 z2 = z3,  Σs = −1 ⇔ T3 = T4  T3 = T4 = − √z1 
If z2 ≥ 0, T1 =    √z1 + 2√z2, T2 =    √z1 − 2√z2 

If z2 < 0, T1 =    √z1 + i2�|z2|, T2 =    √z1 − i2�|z2| 

 z1 = z2 ≥ z3 ≥ 0  ⇔  real T2 = T3   T2 = T3 = Σ �z3 T1 = 2√z1 − Σ�z3,    T4 = −2√z1 − Σ�z3,    s = 1 

Multiplicity 3 Relations 

z1 = z2 = z3,  Σs =    1 ⇔   T1 = T3    ⇔    T1 = T2 = T3 =    √z1,     T4 = −3√z1 

z1 = z2 = z3,  Σs = −1 ⇔   T2 = T4    ⇔    T2 = T3 = T4 = −√z1,     T1 =   3√z1 

Quartic Symmetry Relations 

z1 = 0    ⇔     T1  =  −T2    ⇔     T3  =  −T4 z2 = 0    ⇔     T1  =  −T3    ⇔     T2  =  −T4 

z3 = 0    ⇔     T1  =  −T4    ⇔     T2  =  −T3 z2 = z3 = 0    ⇔     T1  =  T2  =  −T3  =  −T4  =  √z1 

z1 = z2 = 0,  z3 < 0    ⇔     s = −1,    T1  =  T4  =  −T2  =  −T3  =  iΣ�−z3    ⇔     s = −1,    T1  =  T4 

Quartic Multiplicity 4 Is Symmetric 

z1 = z2 = z3 = 0      ⇔      T1  =  T2  =  T3  =  T4  =  0   ⇔     s = 1,    T1  =  T4 
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The second section shows the Euler Resolvent Cubic Equation and the relationship 
between its coefficients an to the coefficients bn of the depressed quartic equation.  
Solutions zn of the resolvent cubic equation have the properties given in the third section, 
Properties of the Resolvent-Cubic-Equation Solutions.  The property z2 z3 ≥ 0 implies that if 
z2 and z3 are real, then z2 and z3 cannot have opposite signs.  The property z1 ≥ z2 ≥ z3 then 
implies that either z1 ≥ z2 ≥ z3 ≥ 0 or z1 ≥ 0 ≥ z2 ≥ z3. 
 
The fourth section, Solutions of the Depressed Quartic Equation, provides formulas for T1, 
T2, T3, and T4 as functions of z1, z2, and z3.  These formulas are from this website’s 
document https://quarticequations.com/Quartic.pdf, Equations (10) through (13).  The Tn 
equations resemble the original Euler formulas, but they are configured so that the radical 
sign denotes the principal square root.  Note that the value s in the figure equals 1 except 
when z2 and z3 are both real and are both less than zero. 
 
The equivalent modified Euler formulation, the one applied in our quartic-equation 
algorithms, is: 

T1  = √z1  + �x2 + x3 − 2Σ�x2x3 + y22 =  √z1  + �z2 + z3 − 2Σ�z2z3 

T2  = √z1  − �x2 + x3 − 2Σ�x2x3 + y22 =  √z1  − �z2 + z3 − 2Σ�z2z3 

T3  =  − √z1  + �x2 + x3 + 2Σ�x2x3 + y22 = − √z1  + �z2 + z3 + 2Σ�z2z3 

T4  =  − √z1  − �x2 + x3 + 2Σ�x2x3 + y22 = − √z1  − �z2 + z3 + 2Σ�z2z3 

 
These modified Euler expressions avoid the need for complex-number operations, but the 
formulas in Figure 11 are used there because of their simplicity in the multiplicity 
condition, for which the zn are all real. 
 
The remaining sections of Figure 11 (Multiplicity 2 Relations, Multiplicity 3 Relations, etc.) 
follow directly from the first four sections.   
 
The Multiplicity 2 Relations show that a multiplicity 2 among the zn implies multiplicity 2 
among the Tn and vice versa.  For the first case suppose that z2 = z3 and Σs = 1.  Then the Tn 
formulas in the figure give T1 = T2 = √z1.   T1 and T2 must be real because z1 ≥ 0. 
 
We can also start with T1 = T2.  Then the T1 and T2 formulas give  
√z1 + √z2 − Σs �z3  =  √z1 − √z2 + Σs �z3      ⇒     √z2  =  Σs �z3     AND     T1 = T2 = √z1 . 

T1 and T2 are again real because z1 ≥ 0.  Σs can only be 1 or −1.  If z2 and z3 are real, they 
cannot have opposite signs so z2 = z3 and Σs = 1.  If z2 and z3 are not real, then they are a 
complex conjugate pair.  Let φ be the argument of z2.  Then 

√z2  = �|z2|𝑒𝑒iφ/2 = Σs �z3 = Σs �|z2|𝑒𝑒−iφ/2  ⇒  𝑒𝑒iφ/2 = ±𝑒𝑒−iφ/2  

https://quarticequations.com/Quartic.pdf
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If the plus sign applies, then φ = 0, z2 and z3 are real, and z2 = z3.  If the minus sign applies 
then 

𝑒𝑒iφ/2 = −𝑒𝑒−iφ/2  ⇒  φ/2 = π − φ/2  ⇒  φ = π, 

which implies that z2 and z3 are real with equal magnitude and opposite sign, an 
impossibility for z2 and z3.  Thus, only the plus sign can apply.  We therefore have  
[z2 = z3, Σs = 1]  ⇔  T1 = T2. 
 
A similar logic argument applies to the second multiplicity 2 case in Figure 11: 
[z2 = z3, Σs = −1]  ⇔  T3 = T4. 
 
The third multiplicity 2 case is z1 = z2 ≥ z3 ≥ 0  ⇔  real T2 = T3.  Demonstrate this by 
starting with z1 = z2 ≥ z3 ≥ 0.  Then the T2 and T3 formulas give  T2 = T3 = Σs �z3 , which 
must be real because z3 ≥ 0. 
 
Alternatively, we can start with real T2 = T3.  Then the T2 and T3 formulas give 

√z1 − √z2 + Σs �z3  =  −√z1 + √z2 + Σs �z3      ⇒     √z1  =  √z2     AND     T2 = T3 = Σs �z3 

The value z1 is always nonnegative real, so the equality  √z1 = √z2  implies z1 = z2 ≥ 0.  That  
T2 = T3  is given as real implies that z3 is real and z3 ≥ 0.  Thus, z1 = z2 ≥ z3 ≥ 0 ⇔ 
real T2 = T3. 
 
Each of the remaining Figure 11 relations for multiplicity 3 and for symmetry can be 
demonstrated in similar fashion.  A quartic equation is symmetric if for each depressed 
solution Tn, another solution Tn is its negative. 
 
In summary, a quartic equation with multiplicity or symmetry has an Euler resolvent cubic 
equation with a corresponding multiplicity or zero value among its three solutions zn.  
 
Tables IV and V below demonstrate how the mitigation design works for the Example 2 
multiplicity and Example 3 symmetry quartic equations. 
 
Example 2 Quartic Equation with Multiplicity 3 
The Example 2 quartic equation is 

Zn4  − 4.2 Zn3 + 6.6 Zn2  − 4.6  Zn+ 1.2 = 0   with true solutions   1.2,  1,  1,  1. 
This is a multiplicity 3 equation: three of four solutions equal the same real value, 1.  Table 
IV lists all of the pertinent parameters, calculated both without and with round-off error 
mitigation.  The table is simplified by omitting calculated values from the Figure 10 dashed 
red box.  These values apply only to quartic equations with symmetry, which is not a 
property of Example 2.  Therefore, the inequality |b1| < Max(b1E, b1E_W) ε in the Figure 10 
dashed red box is FALSE, and the red box makes no change to any relevant parameter. 
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Table IV.   Calculated Parameters for Example 2 Quartic Equation with Multiplicity 3 
Example 2 Quartic Equation:   Zn4  − 4.2 Zn3 + 6.6 Zn2  − 4.6  Zn+ 1.2 = 0 

with solutions   1.2,  1,  1,  1 

Parameter 
Symbol 

Figure 2 
Quartic-
Equation 

Algorithm 
(Value without 

error 
mitigation) 

Figure 1 
Cubic-Equation 

Algorithm 
(Value without 

error mitigation) 

Figure 10 
Final 

Quartic-Equation 
Algorithm 

(Value with error 
mitigation) 

Figure 9 
Final 

Cubic-Equation 
Algorithm 

(Value with error 
mitigation) 

ε -- -- ε = 2−52 = 
2.220446049E-16 

ε = 2−52 = 
2.220446049E-16 

A3 [− 4.2]  [− 4.2]  
A2 [6.6]  [6.6]  
A1 [− 4.6]  [− 4.6]  
A0 [1.2]  [1.2]  
A3E --  4.2  
A2E --  6.6  
A1E --  4.6  
A0E --  1.2  
A0 = 0 FALSE  FALSE  
C -1.05  -1.05  
CE --  1.05  
b2 -0.015  -0.015  
b2E --  19.83  
b1 -0.001  -0.001  
b1E --  32.383  
b0 -1.875E-05  -1.875E-05  
b0E --  18.169575  
a2 -0.0075 [-0.0075] -0.0075 [-0.0075] 
a2E -- -- 9.915 [9.915] 
a1 1.875E-05 [1.875E-05] 1.875E-05 [1.875E-05] 
a1E -- -- 4.579575 [4.579575] 
a0 -1.5625E-08 [-1.5625E-08] -1.5625E-08 [-1.5625E-08] 
a0E -- -- 0.001011969 [0.001011969] 

Calculations from the Figure 10 dashed red box are irrelevant and omitted here. 
q  1.455880E-17  1.455880E-17 
qE  --  1.54305 
qE ε  --  3.42626E-16 
q reset  --  0 
r  -3.777899E-20  -3.777899E-20 
rE  --  0.006261438 
rE ε  --  1.39032E-18 
r reset  --  0 
R = r2 + q3  1.427252E-39  0 
RE    0 
|R| < RE ε    FALSE 
q = r = 0    TRUE 
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Table IV   Calculated Parameters for Example 2 Quartic Equation with Multiplicity 3 
(Page 2) 

Example 2 Quartic Equation:   Zn4  − 4.2 Zn3 + 6.6 Zn2  − 4.6  Zn+ 1.2 = 0 
with solutions   1.2,  1,  1,  1 

Parameter 
Symbol 

Figure 2 
Quartic-Equation 

Algorithm 
(Value without 

error mitigation) 

Figure 1 
Cubic-Equation 

Algorithm 
(Value without 

error mitigation) 

Figure 10 
Final 

Quartic-Equation 
Algorithm 

(Value with error 
mitigation) 

Figure 9 
Final 

Cubic-Equation 
Algorithm 

(Value with error 
mitigation) 

  Numerical Recipes 
 

 

Special Case 2 
q = r = 0 

   
A  4.227596E-07  
t1  -4.227251E-07  
t2x  2.113626E-07  
y2  3.661504E-07  
t3x  2.113626E-07  
z1 [0.002499577] 0.002499577 [0.0025] 0.0025 
x2 [0.002500211] 0.002500211 [0.0025] 0.0025 
y2 [3.661504E-07] 3.661504E-07 [0] 0 
x3 [0.002500211] 0.002500211 [0.0025] 0.0025 
Σ −1  −1  
d 6.251057E-06  6.25E-06  
sz1 0.049995773  0.05  
D 0.010000846  0.01  
sD 0.100004227  0.1  
Y1 0  0  
Tx1 0.15  0.15  
Tx2 -0.050008455  -0.05  
D -5.36219E-11  0  
sD 7.322698E-06  0  
Y3 7.322698E-06  0  
Tx3 -0.049995773  -0.05  
Tx4 -0.049995773  -0.05  
X1 1.2  1.2  
X2 0.999991545  1  
Y1 0  0  
X3 1.000004227  1  
X4 1.000004227  1  
Y3 7.322698E-06  0  

 
The second and third table columns are the “without mitigation” columns.  They list 
parameters calculated by the Figure 2 quartic-equation algorithm and Figure 1 cubic-
equation algorithm.  The fourth and fifth columns list parameters calculated by the final 
algorithms in Figures 10 and 9 with mitigation.  Entries enclosed in square brackets are 
input values, either from the user or from another algorithm in the table. 
 
The two quartic-equation algorithms produce identical values for the resolvent-cubic-
equation coefficients:  a2 = −0.0075,  a1 = 1.875×10−5,  a0 = −1.5625×10−8.  The respective 
cubic-equation algorithms use the calculated coefficient values to solve the resolvent cubic 
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equation.  There, the true values of parameters q and r are both zero:  q = r = 0.  This case 
(Special Case 2) implies that the depressed cubic equation is tn3 = 0, n = 1, 2, 3, and the 
resolvent-cubic-equation solutions all equal the same real value:  z1 = z2 = z3 = −a2/3 = 
0.0025. 
 
Instead of zero, both cubic algorithms calculate the q and r values as round-off errors 
q = 1.45588×10−17 and r = −3.7779×10−20.  The true value of R = r2 + q3 is zero, but the 
Figure 1 cubic-equation algorithm calculates R = 1.42725×10−39. 
 
Because the calculated R is positive, the original Figure 1 algorithm uses Numerical Recipes 
to complete the calculation, starting with the calculation of A (true value is zero): 

A = �|r| + √R�
1/3

  

 = �| −3.7779×10−20| + √1.42725×10−39�
1/3

  =  (7.5558×10−20)1/3  =  4.227596×10−7 
The square root and cube root operations in the formula for A greatly magnify the round-
off errors of r and R.  The Figure 1 and Figure 2 algorithms then go on to infect their 
calculated solutions of the resolvent cubic equation and quartic equation with this 
magnified round-off error.  Instead of z1 = z2 = z3 = 0.0025, the calculated resolvent-cubic-
equation solutions are 0.002499577 and 0.002500211 ± i 3.6615×10−7.  Instead of 
1.2,  1,  1,  1, the calculated quartic-equation solutions are 

1.2,    0.999991545140,    and    1.000004227430 ± i 0.000007322698. 
 
The algorithms with round-off error mitigation avoid these magnified errors.  The Figure 9 
cubic-equation algorithm calculates the error size parameters qE and rE, and finds that  

|q| = 1.455880×10−17  <  qE ε  =  3.42626×10−16    and     

|r| = 3.777899×10−20  <  rE ε  =  1.39032×10−18. 
The algorithm therefore resets both q and r to zero.  It proceeds with Special Case 2 to 
accurately calculate the resolvent-cubic-equation solutions.  These are then used by the 
Figure 10 algorithm to calculate accurate quartic-equation solutions. 
 
Example 3 Quartic Equation Symmetry Condition 
The Example 3 quartic equation is 

Zn4  − 8 Zn3 − 5.84 Zn2  + 87.36  Zn+ 17.64 = 0 with true solutions 7, 4.2, −0.2 and −3. 

This equation is symmetric:  the quartic polynomial and the four solutions are symmetrical 
about the value Z = ZC = 2.  Table V lists all of the pertinent parameters, calculated both 
without and with round-off error mitigation.  The columns of the table correspond to those 
of the previous table (Table IV) except that a sixth column has been added for the Figure 8 
Final Quadratic-Equation Algorithm. 
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Table V.   Calculated Parameters for Example 3 Quartic Equation with Symmetry 
Example 3 Quartic Equation:   Zn4  − 8 Zn3 − 5.84 Zn2  + 87.36  Zn+ 17.64 = 0 

with solutions   7, 4.2, −0.2 and −3 

Parameter 
Symbol 

Figure 2 
Quartic-Equation 

Algorithm 

Figure 1 
Cubic-Equation 

Algorithm 

Figure 10  Final 
Quartic-Equation 

Algorithm 

Figure 9  Final 
Cubic-Equation 

Algorithm 

Figure 8   Final 
Quadratic-
Equation 

Algorithm 

 (Value without error mitigation) (Value with error mitigation) 
ε   ε = 2−52 = 

2.2204460E-16 
ε = 2−52 = 

2.2204460E-16 
ε = 2−52 = 

2.2204460E-16 
A3 [-8]  [-8]   
A2 [-5.84]  [-5.84]   
A1 [87.36]  [87.36]   
A0 [17.64]  [17.64]   
A0 = 0 FALSE  FALSE   
A3E   8   
A2E   5.84   
A1E   87.36   
A0E   17.64   
C -2  -2   
CE   2   
b2 -29.84  -29.84   
b2E   53.84   
b1 0  0   
b1E   326.08   
b0 121  121   
b0E   279.72   
a2 -14.92 [-14.92] -14.92 [-14.92] [-14.92] = B 
a2E   26.92 [26.92] [26.92] = BE 

a1 25.4016 [25.4016] 25.4016 [25.4016] [25.4016] = C 
a1E   270.7532 [270.7532] [270.7532] = CE 

a0 0 [0] 0   
a0E   0 [0]  
b1E_W   0   
b2 < 0   TRUE   
|a1/b22| < 1×10−8  FALSE   
|b1| < Max(b1E, b1E_W) ε  TRUE   
reset b1   0   
reset a0   0 [0]  
|a1| < a1E ε   FALSE   
q  -16.26684444    
r  59.8453357    
r2 + q3  -722.9092147    
 

 
  Viète 

r2 + q3 ≤ 0 
 Special Case 1 

a0 = 0 
 

θ  0.422250267    
φ1  0.140750089    
φ2  -1.953645014    
φ3  2.235145191    
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Table V   Calculated Parameters for Example 3 Quartic Equation with Symmetry 
(Page 2) 

Example 3 Quartic Equation:   Zn4  − 8 Zn3 − 5.84 Zn2  + 87.36  Zn+ 17.64 = 0 
with solutions   7, 4.2, −0.2 and −3 

Parameter 
Symbol 

Figure 2 
Quartic-Equation 

Algorithm 

Figure 1 
Cubic-Equation 

Algorithm 

Figure 10  Final 
Quartic-Equation 

Algorithm 

Figure 9  Final 
Cubic-Equation 

Algorithm 

Figure 8   Final 
Quadratic-
Equation 

Algorithm 

 (Value without error mitigation) (Value with error mitigation) 
t1  7.986666667    
t2x  -3.013333333    
y2  0    
t3x  -4.973333333    
D     121 
DE     1886.3056 
Y    [0] 0 
Q     12.96 
X1    [12.96] 12.96 
X2    [1.96] 1.96 
z1 [12.96] 12.96 [12.96] 12.96  
x2 [1.96] 1.96 [1.96] 1.96  
y2 [0] 0 [0] 0  
x3 [1.776357E-15] 1.776357E-15 [0] 0  
Σ -1  -1   
d 3.481659E-15  0   
sz1 3.6  3.6   
D 1.960000118  1.96   
sD 1.400000042  1.4   
Y1 0  0   
Tx1 5.000000042  5   
Tx2 2.199999958  2.2   
D 1.959999882  1.96   
sD 1.399999958  1.4   
Y3 0  0   
Tx3 -2.200000042  -2.2   
Tx4 -4.999999958  -5   
X1 7.000000042  7   
X2 4.199999958  4.2   
X3 -0.200000042  -0.2   
X4 -2.999999958  3   

 
Both quartic-equation algorithms produce true values for the coefficients (a2 = −14.92,   
a1 = 25.4016,    a0 = 0) of the resolvent cubic equation, which is solved by the respective 
cubic-equation algorithms.    The resolvent-cubic-equation true solutions are z1 = 12.96, 
z2 = x2= 1.96, and z3 = x3 = 0.  The constant coefficient value a0 = 0 indicates that one 
solution zn must be zero. 
 
The Figure 1 cubic-equation algorithm without mitigation does not treat the case a0 = 0 as 
a special case, and so proceeds as usual.  Instead of 0, the calculated z3 is the small error 
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value  z3 = x3 = 1.77636×10−15.  The parameter d = x2x3 + y2y2 in the quartic-equation 
algorithm has true value 0, but is now calculated as d = 3.48×10−15.  This small error for d 
is magnified when the two formulas D = x2 + x3 − 2Σ√d  and D = x2 + x3 + 2Σ√d take its 
square root.  Both D values should be D = x2 = 1.96, but they are calculated as 
1.960000118 and 1.959999882 (relative error ≈ 6×10−8).  The resulting quartic-equation 
calculated solutions Zn suffer a similar relative error. 

Z1 = 7.000000042,   Z2 = 4.199999958,   Z3 = −0.200000042,   Z4 = −2.999999958 
 
The algorithms with round-off error mitigation avoid these magnified errors.  In solving the 
resolvent cubic equation, the case a0 = 0 is Special Case 1 in the Figure 9 algorithm.  The 
algorithm sets one solution to zero and invokes the Figure 8 quadratic-equation algorithm 
to calculate the other two (12.96 and 1.96) as solutions of  Zn2 + a2Zn + a0 = 0 (last column 
of the table on the second page).  The Figure 9 cubic-equation algorithm conveys these 
three accurate solutions to the Figure 10 quartic-equation algorithm, which then accurately 
calculates the quartic-equation solutions. 
 
We have shown that the final algorithms in Figures 8, 9, and 10 eliminate round-off error 
magnification in the first three example problems, but the algorithms address neither the 
symmetry near-miss condition in Example 4 nor the magnification condition in Example 5.  
Those two conditions are handled by post processing as described in the next two sections. 
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V. CUBIC-EQUATION POST PROCESSING FOR SMALL MAGNITUDE SOLUTIONS 

This section describes cubic-equation post processing to eliminate round-off-error 
magnification for magnitude-condition equations: equations with at least two solutions 
that differ significantly in magnitude.  The cubic-equation algorithm provides good 
accuracy for the larger-magnitude solution(s), but round-off error can swamp the smaller-
magnitude solution(s) as we will demonstrate.  To correct this situation, post processing 
applies the accurately-calculated, large-magnitude solution(s) to the cubic-equation 
coefficients to extract accurate values of the small-magnitude solution(s).  The post-
processing is summarized in a detailed calculation flow chart. 
 
The cubic-equation post processing addresses not only the cubic-equation magnitude 
condition, but also quartic-equation symmetry near-miss.  The reason is that such a quartic 
equation has a resolvent cubic equation with the magnitude condition.  We work through 
the Table I, Example 4 quartic equation to demonstrate. 
 
Simple Example Calculations 
A simple example demonstrates why the cubic-equation algorithm has difficulty with 
extreme magnitude differences between equation solutions.  Let the solutions z1, z2, and z3 
of a cubic equation zn3 + a2 zn2 + a1 zn+ a0 = 0 be the three real values 2, 1, and 1×10−17.  
From Equations (2), the equation coefficients are  

 a2  =  − (z1 + z2 + z3) = −(2 + 1 + 1×10−17) = −(3 +1×10−17) 
 a1  =  z1z2 + z1z3 + z2z3 = 2⋅1 + (2 + 1)⋅(1×10−17) =  2 + 3×10−17 
 a0  =  −z1z2z3 = −2⋅1⋅1×10−17 = −2×10−17 

The computer’s limited precision forces it to store a2 as −3 and a1 as 2.  This limitation is 
not a problem because the value  a0 = −2×10−17  retains the needed information about the 
small-magnitude solution z3 = 1×10−17. 
 
The problem occurs in the cubic-equation algorithm with evaluation of parameters q and r: 

q =  
a1
3
−

a22

9
 =

 2
3
−

(−3)2

9
 =  −

1
3

 
 

r =  
a1a2 − 3a0

6
−

a23

27
 =  

2(−3) − 3(−2×10−17)
6

−
(−3)3

27
 =  

−6 + 6×10−17

6
+ 1 

 
The last expression on the right shows that the true value of r is  

r =  
−6 + 6×10−17

6
+ 1 = −1 + 1×10−17 + 1 =  1×10−17 

 However, the computer with its limited precision first calculates the numerator 
−6+6×10−17 as −6.  The calculated value of r becomes  −6/6 + 1 = 0.  At this point, all trace 
of z3 = 1×10−17 has vanished from the computer calculation.  With q = −1/3 and r = 0, the 
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cubic-equation algorithm, Figure 9, proceeds with Special Case 4 to produce  s = �|3q| = 1,  
y2 = tx2 = 0,  t1 = s = 1,  tx3 = −s = −1, 

z1 = t1 − a2/3 = 1 − (−3)/3 = 2, 
z2 = x2 = tx2 − a2/3 = 0 + 1 = 1, 
z3 = x3 = tx3 − a2/3 = −1 + 1 = 0. 

The two larger solutions are accurate, but z3 cannot possibly be 0 because a0 is not 0. 
 
Realizing that the Figure 9 algorithm produces two solutions, z1 and z2 = x2, of the same 
order of magnitude and the third one, z3 = x3, much smaller, we can safely assume that z1 
and z2 are accurate and, therefore, accurately recalculate z3 by using the constant 
coefficient a0 = −z1z2z3: 

z3 = −
a0

z1z2
= −

−2×10−17

2 ∙ 1
= 1×10−17. 

To describe the general case, we relabel solutions from the Figure 9 algorithm as zA, zB, and 
zC where the indices for the new labels indicate the order of absolute value: |zA| ≥ |zB| ≥ |zC|.  
Equations (2) for the cubic-equation coefficients become 

a2  =  − (zA + zB + zC)              a1  =  zAzB + zAzC + zBzC                       a0  =  −zAzBzC . (53) 
 
When |zA| and |zB| are of the same order of magnitude, but |zC| is much smaller, then the 
calculated zA and zB values are accurate, but zC is suspect.  Post processing applies the 
Equation (53) formula for a0 to recalculate zC from a0, zA, and zB: 

zC = −
a0

zAzB
.                                                                         (54) 

Unlike the zC calculated by the Figure 9 algorithm, this zC is recalculated directly from a0 
using the accurately calculated zA and zB values. 
 
This approach is the same applied in the Numerical Recipes algorithm (Figure 4) to solve 
the quadratic equation Zn2 + B Zn + C = 0.  Coefficients B and C are related to the two 
solutions Z1 and Z2 by 
 B = −(Z1 + Z2)  and  C = Z1 Z2. (55) 

For two solutions of unequal magnitude, the solutions must be real, the determinate  
D = B2 − 4C  is positive, and parameter  Q = (|B| +√D)/2  is the absolute value of the larger-
magnitude solution ZA.  The sign of ZA is the opposite that of B, and the smaller magnitude 
solution is calculated as ZB = C/ ZA. 
 
A related approach applies to cubic equations when the magnitude of one solution from the 
Figure 9 algorithm is significantly greater than that of the other two, that is, |zA| >> |zB| ≥ 
|zC|.  This time the accuracy of the Figure 9 algorithm can be trusted only for the largest 
magnitude value zA, and post processing develops a quadratic equation Zn2 + B Zn + C = 0 
to accurately recalculate the values of zB = Z1 and zC = Z2.  We apply the accurate solution 
zA to extract the values of B and C from the cubic-equation coefficients a0 and a1.  From 
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Equation (55), C = Z1 Z2 = zB zC.  Equation (53) gives a0 = −zAzBzC.  We therefore divide −a0 
by zA to obtain C: 

 C = −a0/zA. (56) 

This value of C = zB zC and the solution zA allow us to extract the formula for B = −(zB + zC) 
from a1 by using the Equation (53) expression for a1: 

a1 = zAzB + zAzC + zBzC = zA(zB + zC) + C = − zAB + C    ⇒ 

 B = (C − a1)/zA (57) 
 
Post processing uses (56) and (57) for B and C, then solves the associated quadratic 
equation.  The resulting quadratic-equation solutions are the recalculated values of the 
cubic equation’s two smaller-magnitude solutions zB and zC. 
 
Consider the following example of a cubic equation with solutions  zA = −3,  zB, = 2×10−17, 
and  zC = 1×10−17.  The computer-stored, cubic-equation coefficients are 

 a2  =  3              a1  =  −9×10−17                    a0  =  6×10−34 

The Figure 9 cubic-equation algorithm calculates the solutions as 0, 0, −3. 
 
The calculated values zB = zC = 0 cannot be correct because a0 ≠ 0.  Our post-processing 
calculates C and B as 

C =  −a0/zA  =  −(6×10−34)/(−3) =  2×10−34  

B = (C − a1)/ zA  =  [2×10−34 − (−9×10−17)]/(−3)  =  − 3×10−17 
 
The recalculated values of zB and zC are the two solutions of 

Zn2 − 3×10−17  Zn + 2×10−34 = 0. 

The quadratic formula is adequate to accurately produce the proper solutions for this 
particular case: 

zB,C =  
1
2
�−B ± �B2 − 4C�  =  

1
2
�3×10−17 ± �9×10−34 − 8×10−34� 

zB =  
1
2

(3×10−17 +  1×10−17) =  2×10−17          zC =  
1
2

(3×10−17 −  1×10−17) =  1×10−17 

 
Cubic-Equation Post-Processing Algorithm 
In principle, post processing is quite simple.  The Figure 9 cubic-equation provides its 
solutions zA, zB, and zC of the cubic equation zn3 + a2 zn2 + a1 zn+ a0 = 0 where |zA| ≥ |zB| ≥ |zC|. 

• If |zA| >> |zB|, then zA is real and post processing recalculates zB and zC as the 
solutions of Zn2 + BZn + C = 0 where 

 C = −a0/zA  and  B = (C − a1)/ zA. 

• Otherwise, if  |zB| >> |zC|, then zC is real and post processing recalculates real zC as 
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zC = −
a0

zAzB
. 

 
The actual cubic-equation post processing algorithm, Figure 12, is more complicated.  It 
addresses the specific circumstances that trigger solution recalculation and the mechanism 
for relating zA, zB, and zC to the Figure 9 algorithm outputs z1, x2, x3, y2. 
 
The post-processing inputs are the cubic-equation coefficients a2, a1, and a0, the associated 
error size parameters a2E, a1E, and a0E, and the Figure 9 outputs z1, x2, x3, and y2.  Post 
processing also utilizes a stored adjustable constant ζ = 0.345 for determining whether 
solutions zB and zC are to be recalculated.  Post processing recalculates both zB and zC if 
|zB| ≤ ζ |zA|.  It recalculates only zC if |zC| < ζ |zA| < |zB|.  A ζ-value of 1 implies that zB and zC 
are always recalculated unless they have the same absolute value as zA.  A ζ-value of 0 
implies that zB and zC are never recalculated.  The theoretical range of ζ is 0 ≤ ζ ≤ 1, but the 
Section X error analysis shows that the selected value ζ = 0.345 provides the best solution 
accuracy for our mitigation design. 
 
The post-processing first step is calculating the absolute values of the Figure 9 solutions: 

z1M = |z1|,               z2M ≡ |z2| = �x22 + y22,                z3M ≡ |z3| = �x32 + y22 . 

The algorithm then branches on the logical variable  MIN(z1M, z2M, z3M) < ζ MAX(z1M, z3M).  
The algorithm never explicitly evaluates zA, zB, and zC (which are generally complex), but 
rather applies the corresponding solution components z1, x2, x3, and y2 as appropriate.  
Note that |zC| = MIN(z1M, z2M, z3M), and |zA| = MAX(z1M, z3M).  The greatest magnitude 
solution zA equals either z1 or z3 because z1 is the greatest real solution and z3 ≤ z2  ≤ z1 
when y2 = 0. 
 
If  MIN(z1M, z2M, z3M) < ζ MAX(z1M, z3M)  ⇔  |zC| < ζ |zA|, then at least one solution requires 
recalculation. 
 
Then if y2 ≠ 0, solutions z2 and z3 are a complex conjugate pair, and there are only two 
possibilities: 

1 z1M > z3M.  In this case, the greatest magnitude solution is the real value zA = xA = z1, 
and the complex conjugate pair z2 and z3 need to be recalculated using a quadratic 
equation. 

2 Otherwise, zA and zB are the complex conjugate pair z2 and z3.  The small-magnitude 
solution zC = z1 is recalculated via Equation (54). 

z1 = −
a0

z2z3
= −

a0
x22 + y22

= −a0/x2M2  . 
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Figure 12   Cubic-Equation Post-Processing Algorithm 

 

x3 = −a0/(z1x2) 

x2 = −a0/(z1x3) 

x2 = −a0/(z1x3) 

z1 = −a0/(x2x3) 

Post -Processing Constant:  ζ = 0.345 

Inputs: For the cubic equation zn
3

 + a2 zn
2

 + a1 zn+ a0 = 0, 
1) the real coefficients a2, a1, and a0 and  error size parameters a2E, a1E, a0E 
2) real values z1, x2, x3, y2 as calculated by the Figure 9 algorithm so that z1, z2=x2+ iy2, z3=x3− iy2 

are the three solutions. 
Outputs:  Recalculated real and imaginary component (z1, x2, x3, and/or y2) of any solution zn such that 
|zn| < ζ Max(|z1|, |z3|). 

z1M  ≥  z2M 

z1M  ≥ ζ z3M 
z2M  ≥ ζ z3M True 

False 

False 

True 

False 

True 

xA = x3 

True 

y2 = 0 

False 

a2, a1, a0, a2E, a1E, a0E, z1, x2, x3, y2 

MIN(z1M, z2M, z3M) < ζ MAX(z1M, z3M)  

No recalculated 
solution EXIT True False 

z1M  >  z3M 

z1M = |z1|,  z2M = �x22 + y22,   z3M = �x32 + y22 

True False 
True 

xA = z1 

z1M  > z3M False 

z2M  ≥  z3M 

z2M  ≥ ζ z1M 
z3M  ≥ ζ z1M True 

False 

False 

True 

False 

True 

xA = z1 z1 = −a0/x2M2  

C = −a0/xA             B = (C − a1)/xA             xAE = MAX( |xA|, |a2| ) 

CE =
1

|xA| (a0E + |C|xAE)            BE =
1

|xA| �a1E +
a0E
|xA| + �B +

C
xA
� xAE� 

B 
  

Solve a quadratic equation to recalculate the 
two smaller-magnitude solutions. 
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Figure 12   Cubic Equation Post Processing Algorithm (Page 2) 

 
If y2 = 0, then all three solutions are real, and the algorithm logic determines which of four 
possible orders applies among z1M, z2M, and z3M. 

  zC zB zA 
1 z1M < z2M < z3M z1 x2 x3 
2 z2M ≤ z1M  < z3M x2 z1 x3 
3 z2M  < z3M  ≤ z1M x2 x3 z1 
4 z3M  ≤ z2M  ≤ z1M x3 x2 z1 

 
Variable xA is assigned to zA, which is either x3 or z1.  The algorithm determines whether 
|zB| > ζ |zA| for each possible order.  If so, then only solution zC is recalculated via 
zC = −a0/(zAzB), Equation (54). 
 
Otherwise, both zB and zC are recalculated by solving a quadratic equation.  The algorithm 
calculates the quadratic-equation coefficients C and B via Equations (56) and (57) with zA 
replaced by its equivalent xA: 

 C = −a0/xA      and       B = (C − a1)/ xA. (58) 

y2  = 0 

B 
  

Quadratic Equation Algorithm, Figure 8 
Inputs:  B, C,  BE , CE      Outputs: xq1=X1, xq2=X2, y2=Y 

xA  > xq1 

z1 = xA,  x2 = xq1,  x3 = xq2 z1 = xq1,  x2 = xq2,  x3 = xA 

True 

False 

False 

z1 = xA,  x2 = xq1,  x3 = x2 

z1, x2, x3, y2 

True 

|B| > BE ε 
AND 

|C| > CE ε 

True 

False 
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The quadradic-equation algorithm, Figure 8, also requires the error size parameters CE and 
BE.  To find CE, take the partial derivatives of C with respect to a0 and xA. 

CE =  �
∂C
∂a0

� a0E + �
∂C
∂xA

� xAE    =     
a0E
|xA| +

|a0|
xA2

xAE 

CE =  
1

|xA| (a0E + |C|xAE)                                                                  (59) 

 
The values of a0, a0E, and xA are all known, but the error-size parameter xAE is not.  We know 
that xA is the real, greatest-magnitude, accurately-calculated solution of the cubic equation.  
So, one option is to just set xAE = |xA|.  Another is to set xAE = |a2| because  

a2 = − (z1 + z2 + z3) = − (xA + zB + zC)  ≈  −xA  

when |xA| >> |zB|  and  |xA| >> |zC|.  This condition is the primary reason for performing the 
post processing.  Because we want xAE ε to be an easily-calculated, reasonable, upper bound 
of the round-off error in xA, we opt to calculate xAE as 

 xAE = MAX( |xA|, |a2| ). (60) 
 
Derive the formula for BE by again taking partial derivatives of B in Equation (58) with 
respect to a1, a0 and xA. 
 

BE  =  �
∂B
∂a1

� a1E + �
∂B
∂C

 
∂C
∂a0

� a0E + �
∂B
∂xA

+
∂B
∂C

∂C
∂xA

� xAE 

 

BE =
1

|xA| �a1E +
a0E
|xA| + �B +

C
xA
� xAE�                                               (61) 

After the post-processing algorithm executes Equations (58) to (61) to obtain B, C, BE, and 
CE, it checks whether |B| > BE ε and |C| > CE ε.  That is, it checks whether B and C have 
absolute values that exceed their upper-bound, round-off error magnitudes.  This step is 
necessary for cubic equations that are a resolvent cubic equation of a quartic equation, the 
quartic equation has multiplicity or multiplicity near miss, and the cubic coefficient A3 has a 
very large absolute value.  In such a situation, round-off error may dominate B and/or C, 
and solutions recalculated with the quadradic algorithm would be less accurate than the 
original calculated solutions.  Therefore, if [ |B| > BE ε AND |C| > CE ε ] = FALSE, post 
processing performs no recalculation, and it simply returns the solutions calculated by the 
cubic-equation algorithm. 
 
The usual situation is [ |B| > BE ε AND |C| > CE ε ] = TRUE, and post processing invokes the 
Figure 8 quadratic-equation algorithm.  The Figure 8 outputs xq1, xq2, and y2 are 
components of cubic-equation solutions zB = xq1 + iy2 and zC = xq2 − iy2.  The imaginary 
component y2 is nonnegative.  If y2 = 0, then xq1 ≥ xq2. 
 
Finally, post processing assigns the real components xA, xq1, xq2 of the cubic-equation 
solutions to z1, x2, and x3 where z1 is the greatest real solution.  Recall that the real solution 
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xA is the greatest-magnitude solution, which must equal either z1 or x3.  If y2 ≠ 0, then 
z1 = xA, and x2 = x3 = xq1 = xq2.  Otherwise, y2 = 0 and z1 is the greater of xA or xq1.  If 
xA > xq1, then z1 = xA, x2 = xq1, and x3 = xq2.  Otherwise, z1 = xq1, x2 = xq2, and x3 = xA. 
 
 
Quartic-Equation Symmetry Near Miss (Table I, Example 4) 
Solving the Example 4 quartic equation with the symmetry near-miss condition 
demonstrates the operation and effectiveness of cubic-equation post processing.  Cubic-
equation post processing is relevant because a symmetry-near-miss quartic equation has a 
resolvent cubic equation with the magnitude condition.  If a quartic equation is perfectly 
symmetric, then the resolvent cubic equation has at least one solution equal to zero.  The 
resolvent cubic equation therefore has a constant coefficient a0 = 0, Special Case 1.  If the 
quartic equation is a symmetry near miss, then the resolvent cubic equation has a solution 
of very small magnitude relative to the greatest-magnitude solution.  That is, the resolvent 
cubic equation has the magnitude condition and needs cubic-equation post processing. 
 
The Example 4 quartic equation is 

  Zn4  − 7.9999999 Zn3 − 5.84000082 Zn2  + 87.35999958  Zn+ 17.64000882 = 0   

with true solutions 7, 4.2, −0.2000001, and −3.  This example 4 equation is a modification of 
the Example 3 quartic equation 

Zn4  − 8 Zn3 − 5.84 Zn2  + 87.36  Zn+ 17.64 = 0 

with true solutions 7, 4.2, −0.2 and −3 and with symmetry about the value Z = ZC = 2. 
 
When we use cubic-equation post processing, the solutions of the Example 4 symmetry-
near-miss equation are calculated accurately: solution relative error is less than 10−16.  
Solution relative error without cubic-equation post processing is on the order of 10 −7. 
 

EXAMPLE 4 CALCULATED SOLUTIONS 
WITH AND WITHOUT CUBIC-EQUATION POST PROCESSING 

 with 7.000000000000 4.200000000000 −0.200000100000 −3.000000000000 
 without 7.000000017147 4.199999982853 −0.200000117147 −2.999999982853 
 
Table VI, which is over two pages long, lists all of the pertinent Example 4 parameters, 
calculated both with and without cubic-equation post processing.  The values listed in the 
second column are those from the Figure 10 quartic-equation algorithm with no post 
processing; values listed in last column are those from the same algorithm with cubic-
equation post processing.  Entries on each row of the table’s first page are the same for 
these two columns.  The third column corresponds to the Figure 9 cubic-equation 
algorithm, which calculates solutions to the resolvent cubic equation.  The fourth column 
corresponds to the Figure 12 cubic-equation post-processing algorithm, which invokes the 
Figure 8 quadratic-equation algorithm in the fifth column.  
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Table VI.   Calculated Parameters for Example 4 Quartic Equation with Symmetry Near Miss 
Example 4 Quartic Equation: 

Zn4  − 7.9999999 Zn3 − 5.84000082 Zn2  + 87.35999958  Zn+ 17.64000882 = 0 
with solutions   7, 4.2, −0.2000001, and −3 
Parameter 

Symbol 
Figure 10  Final 

Quartic-
Equation 

Algorithm with 
no Post 

Processing 

Figure 9 Final 
Cubic-Equation 

Algorithm 

Figure 12 
Cubic-Equation 
Post-Processing 

Algorithm 

Figure 8 Final 
Quadratic-
Equation 

Algorithm 

Figure 10 Final 
Quartic-
Equation 

Algorithm with 
Cubic-Equation 
Post Processing 

 [ε = 2−52 = 
2.2204460E-16] 

[ε = 2−52 = 
2.2204460E-16] 

[ζ = 0.345] [ε = 2−52 = 
2.2204460E-16] 

[ε = 2−52 = 
2.2204460E-16] 

A3 [-7.9999999]    [-7.9999999] 
A2 [-5.84000082]    [-5.84000082] 
A1 [87.35999958]    [87.35999958] 
A0 [17.64000882]    [17.64000882] 
A0 = 0 FALSE    FALSE 
A3E 7.9999999    7.9999999 
A2E 5.84000082    5.84000082 
A1E 87.35999958    87.35999958 
A0E 17.64000882    17.64000882 
C -1.999999975    -1.999999975 
CE 1.999999975    1.999999975 
b2 -29.84000022    -29.84000022 
b2E 53.83999962    53.83999962 
b1 -1.008000E-06    -1.0080000E-06 
b1E 326.0799984    326.0799984 
b0 121.0000055    121.0000055 
b0E 279.7200073    279.7200073 
a2 -14.92000011 [-14.92000011] [-14.92000011]  -14.92000011 
a2E 26.91999981 [26.91999981] [26.91999981]  26.91999981 
a1 25.40159945 [25.40159945] [25.40159945]  25.40159945 
a1E 270.7532019 [270.7532019] [270.7532019]  270.7532019 
a0 -1.5876E-14 [-1.5876E-14] [-1.5876E-14]  -1.5876E-14 
a0E 1.02715E-05 [1.02715E-05] [1.02715E-05]  1.02715E-05 

Calculations from the Figure 10 dashed red box are irrelevant and omitted here. 
q  -16.26684499    
qE  179.5058229    
qE ε  3.985830E-14    
r  59.84533934    
rE  1225.144945    
rE ε  2.720368E-13    
R = r2+q3  -722.909216    
RE  289135.6698    
|R|  <  RE ε  FALSE    
q = r = 0  FALSE    
R = 0  FALSE    
r = 0  FALSE    
R > 0  FALSE    
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Table VI   Calculated Parameters for Example 4 Quartic Equation with Symmetry Near Miss 
(Page 2) 

Parameter 
Symbol 

Figure 10  Final 
Quartic-Equation 
Algorithm with 

no Post 
Processing 

Figure 9   Final 
Cubic-Equation 

Algorithm 

Figure 12 
Cubic-Equation 
Post-Processing 

Algorithm 

Figure 8 Final 
Quadratic-
Equation 

Algorithm 

Figure 10  Final 
Quartic-Equation 
Algorithm with 
Cubic-Equation 
Post Processing 

    Viète 
r2 + q3 ≤ 0 

   

θ  0.422250244    
φ1  0.140750081    
φ2  -1.953645021    
φ3  2.235145184    
t1  7.98666681    
t2x  -3.01333344    
t3x  -4.97333337    
y2 [0] 0 [0]   
z1 [12.96000018] 12.96000018 [12.96000018]   
x2 [1.95999993] 1.95999993 [1.95999993]   
x3 [1.776357E-15] 1.776357E-15 [1.776357E-15]   
ζ   0.345   
z1M   12.96000018   
z2M   1.95999993   
z3M   1.77636E-15   
MIN(z1M, z2M, z3M) < ζ MAX(z1M, z3M)  TRUE  (Recalculate small-magnitude solution(s)) 
y2 = 0   TRUE   
z1M > z3M   TRUE   
xA   12.96000018   
z2M ≥ z3M   TRUE   
z2M > ζ z1M  FALSE  (Recalculate two smallest-magnitude solutions) 
C   1.225E-15 [1.225E-15]  
B   -1.95999993 [-1.95999993]  
xAE   14.92000011   
CE   7.92556E-07 [7.92556E-07]  
BE   23.14787019 [23.14787019]  
|B| > BE ε AND |C| > CE ε  TRUE (Solve quadratic equation)  
D    3.841599726  
DE    90.73965108  
|D|  <  DE  ε    FALSE  
D > 0    TRUE  
y2 = Y   [0] 0  
Q    1.95999993  
B ≥ 0    FALSE  
xq1=X1   [1.95999993] 1.95999993  
xq2=X2   [6.250000E-16] 6.250000E-16  
xA  > xq1   TRUE   
z1 [12.96000018]  12.96000018  [12.96000018] 
x2 [1.95999993]  1.95999993  [1.95999993] 
x3 [1.776357E-15]  6.250000E-16  [6.250000E-16] 
y2 [0]  0  [0] 
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Table VI   Calculated Parameters for Example 4 Quartic Equation with Symmetry Near Miss 
(Page 3) 

Parameter 
Symbol 

Figure 10  Final 
Quartic-
Equation 

Algorithm with 
no Post 

Processing 

Figure 9   Final 
Cubic-Equation 

Algorithm 

Figure 12 
Cubic-Equation 
Post-Processing 

Algorithm 

Figure 8 Final 
Quadratic-
Equation 

Algorithm 

Figure 10  Final 
Quartic-
Equation 

Algorithm with 
Cubic-Equation 
Post Processing 

Σ -1    -1 
d 3.4816594E-15    1.2249999E-15 
sz1 3.600000000    3.600000000 
D 1.960000118    1.960000000 
sD 1.400000042    1.400000000 
D < 0 FALSE    FALSE 
Y1 0    0 
Tx1 5.000000042    5.000000000 
Tx2 2.199999958    2.200000000 
D 1.959999882    1.960000000 
sD 1.399999958    1.400000000 
D < 0 FALSE    FALSE 
Y3 0    0 
Tx3 -2.200000042    -2.200000000 
Tx4 -4.999999958    -5.000000000 
X1 7.000000017    7.000000000 
X2 4.199999983    4.200000000 
X3 -0.200000117    -0.200000100 
X4 -2.999999983    -3.000000000 

 
Entries enclosed in square brackets are input values, either from the user or from another 
algorithm in the table. 
 
With the coefficient inputs, A3, A2, A1, A0, the quartic-equation algorithm detects no special 
cases, and so proceeds to calculate in straight-forward manner the coefficients a2, a1, and a0 
of the resolvent cubic equation and also the corresponding error size parameters a2E, a1E, 
and a0E. 
 
The cubic-equation algorithm takes over the parameter calculation with parameter q about 
2/3 of the way down the first page of the table.  The algorithm detects no special case, so 
with R = r2 + q3 = −722.9 (not positive), the algorithm proceeds with Viète to set y2 = 0 
and calculate the resolvent cubic equation’s three real solutions, whose values are listed 
about 1/4 of the way down the table’s second page. 

z1 = 12.96000018,   z2 = x2 = 1.95999993,   and   z3 = x3 = 1.776357×10−15 

The values y2 = 0, z1, x2, and x3 are boxed in red. 
 
The second column of the table (quartic-equation algorithm with no post processing) uses 
these solutions of the resolvent cubic equation. 
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The ultra small magnitude of the third solution x3 = 1.77636×10−15 makes its accuracy 
suspect.  In fact, most of this x3 value is round-off error. 
 
Cubic-equation post processing remedies the problem.  The cubic-equation algorithm 
passes on to the post-processing algorithm the values of a2, a1, a0, a2E, a1E, and a0E on the 
first page of the table, as well as its solution values y2, z1, x2, and x3 boxed in red. 
 
Post processing’s first step is calculation of the absolute values of the three solutions: 
znM = |zn|.  In this particular case, the absolute values are in value order (greatest to least) 
and equal to the solutions themselves. 
 
Next, the algorithm finds that 

MIN(z1M, z2M, z3M) = z3M = 1.77636×10−15 < ζ MAX(z1M, z3M) = 0.345 × 12.96000018, 
so, some form of solution recalculation is required.  The conditions y2 = 0 and z1M > z3M 
imply that solution z1 has the greatest absolute value of three real solutions.  Therefore, set 
xA = z1 = 12.96000018.  Also, z2M ≥ z3M, so z2 = x2 has the second greatest magnitude, and 
z3 = x3 has the least.  Because z2M does not satisfy z2M = 1.96 > ζ z1M = 0.345×12.96, both z2 
and z3 will be recalculated as solutions of a quadratic equation. 
 
Post processing proceeds to calculate the quadratic-equation coefficients C and B and error 
size parameters xAE, CE and BE.  Coefficients C and B have absolute values greater than their 
error upper bounds BE ε and CE ε, so the algorithm invokes the quadratic-equation 
algorithm, whose parameters are listed in the table’s fifth column. 
 
The quadratic-equation algorithm, finding there are no special cases and that discriminate 
D = B2 − 4C is positive, proceeds to calculate the two real quadratic-equation solutions 
using the Numerical Recipes process.  The solution components, xq1 = X1, xq2 = X2, and 
y2 = Y, are returned to so, cubic-equation post-processing algorithm. 
 
The post-processing algorithm finds that y2 = 0 and xA = 12.96 > xq1 = 1.96, and so reports 
back to the quartic-equation algorithm the components of the revised resolvent-cubic-
equation solutions as follows:  

z1 = 12.96000018,   x2 = 1.95999993,   x3 = 6.250000×10−16,   y2 = 0 

These values, at the bottom of page 2 of the table, are boxed in green.  Recalculation does 
not change the x2 value, but the accurate recalculated x3 = 6.25×10−16 is less than half of the 
original value of 1.78×10−15.  The original, incorrect value of the resolvent-cubic-equation 
solution x3 is the source of error in the quartic-equation solutions when no post processing 
is used. 
 
The recalculated resolvent-cubic-equation solutions boxed in green are reported back to 
the quartic-equation algorithm, as reflected in the last column of the table and going 
forward to page 3 of the table.  Calculated solutions of the quartic equation in the table’s 
last column are accurate with relative error less than 10−16. 
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Quartic-equation entries in the second column on page 3 of the table (no post processing) 
reflect the original calculated values of the resolvent-cubic-equation solutions, boxed in 
red.  Relative error of these calculated quartic-equation solutions is on the order of 10 −7. 
 
There is one final note on our post processing.  Recalculation did not change the value of 
resolvent-cubic-equation solution x2 because the original value was already accurate.  The 
algorithm recalculates x2 because the stored parameter ζ = 0.345 is large, and 
z2M = |x2| = 1.96 fails to exceed ζ z1M = 0.345 × 12.96 = 4.47.  The Section X error analysis 
shows that a ζ value of 0.345 minimizes error.  The side effect of this large ζ is that solution 
values calculated originally are sometimes accurate but are recalculated anyway. 
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VI. QUARTIC-EQUATION POST PROCESSING FOR SMALL MAGNITUDE SOLUTIONS 

This section expands the post-processing techniques from the last section to work with 
quartic equations.  Given the coefficients A3, A2, A1, and A0 of the quartic equation  
Zn4 + A3Zn3 + A2Zn2 + A1Zn + A0 = 0, the quartic-equation algorithm, Figure 10, calculates 
the components X1, X2, Y1, X3, X4, Y3 of the four solutions Z1=X1+iY1, Z2=X2−iY1, Z3=X3+iY3, 
and Z4=X4−iY3.  If the accuracy of one, two, or three of the calculated solutions is suspect 
because the solution absolute value is sufficiently small, then the post processing 
accurately recalculates the suspect solutions.  The post-processing design addresses the 
magnitude-condition quartic equations like Table I, Example 5.  We work through Example 
5 to demonstrate the operation of the post-processing algorithm, Figure 13. 
 
Quartic-Equation Post Processing Algorithm 
The post-processing inputs are the quartic-equation coefficients A3, A2, A1, and A0, the 
associated error size parameters A3E, A2E, A1E, and A0E, and the calculated solution 
components X(1)=X1, X(2)=X2, Y(1)=Y1, X(3)=X3, X(4)=X4, and Y(3)=Y3 from Figure 10.  
The algorithm also stores the constant ζ = 0.345, the same used in the Figure 12 cubic 
equation post processing algorithm.  Even though the imaginary components of Z2 and Z4 
are −iY1 and −iY3, the post processing algorithm sets Y(2)=Y(1) and Y(4)=Y(3).  The 
algorithm requires the nonnegative Y values. 
 
To determine which solutions need recalculation, we need to place the four solutions in 
order of their magnitudes (absolute values), or equivalently in order of the square of 
absolute values.  The algorithm starts by calculating ZSQ(k) = |Zk|2, the square of absolute 
value of each solution: 
 ZSQ(k) = X2(k) + Y2(k),     k = 1 to 4 (62) 

The next task is to relabel the ZSQ(k) as ZMSQ(k) so that the ZMSQ(k) are in value order: 

ZMSQ(1)  ≥  ZMSQ(2)  ≥  ZMSQ(3)  ≥  ZMSQ(4). 
Additionally, we need an index function IIN(k) that associates each ordered ZMSQ(k) with the 
appropriate ZSQ.  That is, ZSQ[IIN(k)] = ZMSQ(k). 
 
The following table provides an example to help clarify. 

Table VII.  Example of Solution Ordering 
Input 

Index IIN 
X(IIN) Y(IIN) ZSQ(IIN)  Output 

Index IOUT ZMSQ(IOUT) Index Function 
IIN(IOUT) 

1 3×10 −8 4×10 −8 2.5 × 10 −15  1 49 4 
2 3×10 −8 −4×10 −8 2.5 × 10 −15  2 2.5 × 10 −15 1 
3 2×10 −12 0 4×10 −24  3 2.5 × 10 −15 2 
4 7 0 49  4 4×10 −24 3 

The first column contains the input index IIN values in order 1 to 4.  The next two columns 
list the solution components, X(IIN) and Y(IIN), of an example quartic equation.  Equation 
(62) above gives the ZSQ(IIN) values in the fourth column.  Think of ZSQ(IIN) as the input 
function.  
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Figure 13   Quartic-Equation Post-Processing Algorithm 

Post -Processing Constant:  ζ = 0.345 

Inputs: For the quartic equation Zn4 + A3Zn3 + A2Zn2 + A1Zn + A0 = 0, 

1) real coefficients A3, A2, A1, A0  and  error size parameters A3E, A2E, A1E, A0E 
2) real values X(1), X(2), Y(1), X(3), X(4), and Y(3) as calculated by the Figure 10 algorithm so that 

Z1 = X(1) + iY(1), Z2 = X(2) − iY(1), Z3 = X(3) + iY(3), and Z4 = X(4) − iY(3) are the four solutions. 

Outputs:  Recalculated values X(1), X(2), Y(1), X(3), X(4), and Y(3) as required.  Components of any 
solution Zn are recalculted if  |Zn| < ζ Max(|Z1|, |Z2|, |Z3|, |Z4|). 

True False 

A3, A2, A1, A0, A3E, A2E, A1E, A0E, X(1), X(2), Y(1), X(3), X(4), Y(3) 

ZMSQ(4) < ZSQ_TH  
No solution 

requires 
recalculation. 

EXIT 

True False 

A 
  

Y(2) = Y(1),    Y(4) = Y(3),           ZSQ(k) = X2(k) + Y2(k),   k = 1 to 4 

Value-Ordering Routine, Figure 14 

Inputs:  N = 4,  XIN(k) = ZSQ(k), k = 1 to 4         Outputs:   ZMSQ(k) = XOUT(k), IIN(k), k = 1 to N 

ZSQ_TH = ZMSQ(1) ζ2 

XM(k) = X[IIN(k)],  YM(k) = Y[IIN(k)],  k = 1 to 4 

ZMSQ(2) < ZSQ_TH  

Use a cubic equation to recalculate three 
smaller-magnitude solutions. 

X1 = XM(1),    Y1 = 0,          a0 = −A0/X1,         a1 = (a0 − A1)/X1 

   a2 = (a1 − A2)/X1,         X1E = MAX( |X1|, A3E ) 

a0E =
1

|X1|
(A0E + |a0|X1E) ,        a1E =  

1
|X1| �A1E +

A0E

|X1| + �a1 +
a0
X1
�X1E� 

a2E =
1

|X1|�A2E +
A1E

|X1| +
A0E

X12
+ �a2 +

a1
X1

+
a0
X12
�X1E� 

Cubic-Equation Algorithm, Figure 9 
Inputs: a2, a1, a0, a2E, a1E, a0E 

Outputs: X2 = z1,  X3 = x2,  X4 = x3,  Y3 = y2 

B 
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Figure 13   Quartic Equation Post Processing Algorithm (Page 2) 

The first output function is ZMSQ(IOUT) where the ZMSQ are the same values as the ZSQ but in 
proper order.  The index function IIN(IOUT) in the last column is also an output function.  It is 
defined so that ZSQ[IIN(IOUT)] = ZMSQ(IOUT) for all IOUT. 
 
We obtain the ZMSQ(k) and IIN(k) functions from the generic ordering routine in Figure 14 
below.  The inputs are N = 4 and XIN(k) = ZSQ(k); the outputs are ZMSQ(k) = XOUT(k) and 
IIN(k). 
 
The greatest ZMSQ is ZMSQ(1).  This value is the standard against which the other ZMSQ(k) are 
compared to determine whether the corresponding solution ZM[IIN(k)] requires 
recalculation.  Figure 13 post processing calculates the threshold value 

 ZSQ_TH = ZMSQ(1) ζ2. (63) 

Solve a quadratic equation to recalculate the 
two smaller-magnitude solutions. 

A 
  

B 
  

True 

False 

ZMSQ(3) < ZSQ_TH  

X1 = XM(1),    Y1 = YM(1),     X2 = XM(2), 

P12 = X1X2 +Y12,          P12E = MAX(|P12|, A2E) 

S12 = X1 + X2,                      S12E = MAX(|S12|, A3E) 

C = A0/ P12,                   B = (A1 + C S12)/ P12 

CE = |C| �1 +
P12E
|P12|� 

BE =
1

|P12| �A1E + �
S12
P12

�A0E + |C|S12E + �B +
S12
P12

C�P12E� 

Quadratic Equation Algorithm, Figure 8 

Inputs:  B, C,  BE, CE 
Outputs: X3, X4, Y3 

Recalculate 
the 
smallest-
magnitude 
solution. 

True 

False 

X1, X2, Y1, X3, X4, Y3 

Y3 = 0 

YM(1) > 0 

X1 = X2 = XM(1) 
Y1 = YM(1),   X3 = XM(3) 

X1 = XM(2),   X2 = XM(3), 
Y1 = YM(2),   X3 = XM(1) 

X4 = A0/[(X1X2 + Y12)X3] 



Quartic-Equation Post Processing 

9/24/2021  Page 59 of 136 

Figure 14   Value-Ordering Routine 

 

Inputs: N = number of elements in the input and output arrays 
 XIN(k) = array of values to be ordered for k = 1 to N 

 
Outputs: XOUT(IOUT) = array of XIN values ordered from greatest to least for IOUT = 1 to N 
 IIN(IOUT) = array of order index values such that XIN[IIN(IOUT)] = XOUT(IOUT) 

N, XIN(k) for k = 1 to N 

L IN(k) = TRUE,   k = 1 to N 

XOUT(IOUT), IIN(IOUT) for IOUT = 1 to N 

Loop  
IOUT = 1 to N 

True value indicates that 
XIN(k) has not yet been 

ordered. 

k = 1 

L IN(k) 

IIN(IOUT) = k,   XOUT(IOUT) = XIN(k) 

k = k + 1 

Do While 
1 ≤ k ≤ N 

True 

False 

k = IIN(IOUT)  + 1 

Do While 
k ≤ N 

L IN(k) True 

False 
XIN(k) > XOUT(IOUT) 

IIN(IOUT) = k,   XOUT(IOUT) = XIN(k) 
k = N 

True 

False 

L IN[IIN(IOUT)] = FALSE 

Outer loop is the output index IOUT 

Search for least index 
value k such that 
L IN(k) = TRUE.  Set 
IIN(IOUT) = k  and   
XOUT(IOUT) = XIN(k).  
These are initial trial 
values for IOUT. 
Set k = N to exit this 
initiating  search. 

Proceed to next valid 
index k = IIN(IOUT)  + 1. 
Search all remaining k 
with L IN(k) = TRUE.   
If XIN(k) > XOUT(IOUT), 
set IIN(IOUT) = k  and   
XOUT(IOUT) = XIN(k).  
After the index k 
values are exhausted, 
IIN(IOUT) and XOUT(IOUT) 
are the desired 
outputs for IOUT. 

k = k + 1 Set 
L IN[IIN(IOUT)] = FALSE, 
and proceed to next 
IOUT value. 
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The branch, ZMSQ(4) < ZSQ_TH, checks whether the smallest ZMSQ, ZMSQ(4), is less than the 
threshold.  If not, then all ZMSQ are sufficiently large that no recalculation is necessary, and 
the algorithm exits.  Otherwise, some form of recalculation is required.  In that case, the 
algorithm assigns the ordered solutions ZM(k) their real and imaginary components using 
the integer function IIN(k): 

 XM(k) = X[IIN(k)],    YM(k) = Y[IIN(k)]        k = 1 to 4. (64) 

where ZM(k) = XM(k) + iYM(k) and ZMSQ(k) = | ZM(k) |2. 
 
The algorithm then works its way through a series of branches to determine which of the 
solutions ZM(k) require recalculation.  The second greatest ZMSQ is ZMSQ(2).  If 
ZMSQ(2) < ZSQ_TH, then ZM(2), ZM(3), and ZM(4) all require recalculation by solving a cubic 
equation.  Otherwise, if ZMSQ(3) < ZSQ_TH, then ZM(3) and ZM(4) require recalculation by 
solving a quadratic equation.  Otherwise, only ZM(4) requires recalculation. 

Use a Cubic Equation to Recalculate Three Small-Magnitude Solutions 
Suppose ZMSQ(2) < ZSQ_TH, so that ZM(2), ZM(3), and ZM(4) all require recalculation by 
solving a cubic equation.  The greatest-magnitude solution ZM(1) = XM(1) + iYM(1) is 
accurate where components XM(1) and YM(1) are known from Equation (64): 
XM(1) = X[IIN(1)]  and  YM(1) = Y[IIN(1)].  This solution must be real because 
ZMSQ(2) < ZSQ_TH < ZMSQ(1).  That is, ZM(1) = XM(1).  The solution ZM(1) components are 
relabeled 
 X1 = XM(1),       Y1 = 0, (65) 

and we recalculate the components of the three other quartic-equation solutions as the 
components of the three solutions of a cubic equation zn3 + a2 zn2 + a1 zn+ a0 = 0. 

 X2 = z1       X3 = x2      X4 = x3      Y3 = y2. (66) 
 
The algorithm generates the cubic-equation coefficients a2, a1, and a0 from the values of X1, 
Y1=0, and the quartic-equation coefficients A2, A1, and A0.  Derivation of the a2, a1, and a0 
formulas starts with Equations (3) and (66): 

 a2 = − (z1 + x2 + x3) = −(X2 + X3 + X4) (67) 

 a1 =  z1(x2 + x3) + x2x3 + y22 =  X2(X3 + X4) + X3X4 + Y32 (68) 

 a0 = − z1(x2x3 + y22) = − X2(X3X4 + Y32) (69) 
The quartic-equation coefficients are related to the solution components by the check 
equations, Equations (19) to (21) with Y1=0. 

A2 = X1X2 + (X1+X2)(X3+X4) + X3X4 + Y32 =  X1(X2+X3+X4) + X2(X3 + X4) + X3X4 + Y32 

A1 = −[ X1X2(X3+X4)+(X3X4+Y32)(X1+X2) =  − X1[X2(X3+X4)+X3X4+Y32]  −  X2(X3X4+Y32) 

A0 = X1X2(X3X4+Y32) 

These expressions for A2, A1, and A0 combine with Equations (67) to (69) to produce 

 A0 = −X1a0,                        A1 = −X1a1 + a0,                          A2 = −X1a2 + a1. 
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Now these three equations combine to produce the post-processing expressions for the 
cubic-equation coefficients a0, a1, and a2: 

   a0 = − A0/X1        a1 = (a0 − A1)/X1            a2 = (a1 − A2)/X1   (70) 
 
In addition to the three coefficients a0, a1, and a2, the Figure 9 cubic-equation algorithm also 
requires the associated error size parameters a0E, a1E, and a2E.  Obtain them by first 
expanding the equations in (70). 

a0 = −
A0

X1
                         a1 = −�

A1

X1
+

A0

X12
�                        a2 = −�

A2

X1
+

A1

X12
+

A0

X13
� 

 
Calculate the error size parameters in the usual way by taking partial derivatives. 

a0E = �
∂a0
∂A0

�A0E + �
∂a0
∂X1

�X1E   =
A0E
|X1| +

|A0|
X12

X1E 

 

a0E =
1

|X1|
(A0E + |a0|X1E)                                                    (71) 

 

a1E = �
∂a1
∂A1

�A1E + �
∂a1
∂A0

�A0E + �
∂a1
∂X1

�X1E   =    
A1E
|X1| +

A0E

X12
+ �

A1

X12
+

2A0

X13
�X1E 

 

a1E =  
1

|X1| �A1E +
A0E
|X1| + �a1 +

a0
X1
�X1E�                           (72) 

 

a2E = �
∂a2
∂A2

�A2E + �
∂a2
∂A1

�A1E + �
∂a2
∂A0

�A0E + �
∂a2
∂X1

�X1E 

        =
A2E
|X1| +

A1E

X12
+

A0E

|X13| + �
A2

X12
+

2A1

X13
+

3A0

X14
�X1E 

 

a2E =
1

|X1|�A2E +
A1E
|X1| +

A0E

X12
+ �a2 +

a1
X1

+
a0
X12
�X1E�   (73) 

 
The constituent values of X1, A2E, A1E, A0E, a2, a1, and a0 are known, but X1E is not.  We know 
that X1 is the real, greatest-magnitude, accurately-calculated solution of the quartic 
equation.  So, one option is to just set X1E = |X1|.  Equation (14) for A3 also suggests the 
option to set X1E = |A3| because 

A3  =  −(Z1+Z2+Z3+Z4) = −[Z1+ZM(2)+ZM(3)+ ZM(4)]  ≈  −Z1 = −X1 

when |Z1| = |X1| >> |ZM(2)| ≥  |ZM(3)| ≥  |ZM(4)|.  This condition is the primary reason for 
performing the post processing.  Because we want X1E ε to be an easily-calculated, 
reasonable, upper bound of the round-off error in X1, we opt to calculate X1E as 

 X1E = MAX( |X1|, A3E)  = MAX( |X1|, |A3| ). (74) 
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To recalculate three small-magnitude solutions using a cubic equation, the algorithm 
executes Equation (65) for X1 = XM(1) and Y1 = 0, Equation (70) for a0, a1, and a2, Equation 
(74) for X1E, and Equations (71) to (73) for a0E, a1E, and a2E.  It then invokes the Figure 9 
cubic-equation algorithm, whose outputs z1, x2, x3, and y2 provide the components of the 
recalculated, small-magnitude, quartic-equation solutions in (66): 

X2 = z1,    X3 = x2,    X4 = x3,    Y3 = y2 

Use a Quadratic Equation to Recalculate Two Small-Magnitude Solutions 
Suppose ZMSQ(2) ≥ ZSQ_TH, but ZMSQ(3) < ZSQ_TH so that ZM(3) and ZM(4) require recalculation 
by solving a quadratic equation.  The two greatest-magnitude solutions 
ZM(1) = XM(1) + iYM(1) and ZM(2) = XM(2) − iYM(1) are accurate where components XM(1), 
XM(2), and YM(1) are known from Equation (64): XM(1) = X[IIN(1)],  XM(2) = X[IIN(2)],  
YM(1) = Y[IIN(1)].  The components of these two larger-magnitude solutions are relabeled: 

 X1 = XM(1),        X2 = XM(2),           Y1 = YM(1). (75) 

Label the product and sum of Z1 and Z2 as P12 ≡ Z1Z2 and S12 ≡ Z1 + Z2 and calculate them as 

 P12 = X1X2 + Y22     and       S12 = X1 + X2. (76) 
 
We find the two other quartic-equation solutions Z3 = X3 + iY3 and Z4 = X4 − iY3 as the two 
solutions of a quadratic equation  Zn2 + B Zn + C = 0 where coefficients B and C satisfy 

 B = −(Z3 + Z4) = −(X3 + X4)    and    C = Z3Z4 = X3X4 + Y33. (77) 
 
The algorithm generates B and C from the values of X1, X2, Y1, and the quartic-equation 
coefficients A1, and A0.  Derivation of the B and C formulas starts with Equation (16) and 
(17). 

A1  =  −(Z1Z2Z3+Z1Z2Z4+Z1Z3Z4+Z2Z3Z4)  =  − Z1Z2(Z3 + Z4) − Z3Z4(Z1 + Z2) 

A0  =  Z1Z2Z3Z4 

These expressions for A1 and A0 combine with (77) to produce 

 A0 = Z1Z2C                  A1 =  Z1Z2B − C(Z1 + Z2). 

Now these two equations combine with the definitions  P12 ≡ Z1Z2  and  S12 ≡ Z1 + Z2  to 
produce the post-processing expressions for B and C: 

   C = A0/P12                        B = (A1 + C S12)/ P12 (78) 
 
The algorithm calculates X1, X2, and Y1 from (75), P12 and S12 from (76), and C and B from 
(78). 
 
In addition to the coefficients C and B, the Figure 8 quadratic-equation algorithm also 
requires the associated error size parameters CE and BE.  Obtain them from (78) in the 
usual way by taking partial derivatives. 
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CE = �
∂C
∂A0

�A0E + �
∂C
∂P12

�P12E   =    
A0E
|P12| +

|A0|
P122

P12E 

CE =  |C| �1 +
P12E
|P12| �              (79) 

The last equation results from the fact that A0E = |A0| and A0/P12 = C. 
 
For the BE formula, first substitute A0/P12 for C in the Equation (78) expression for B. 

B =
A1

P12
+

A0S12
P122

 

BE = �
∂B
∂A1

�A1E + �
∂B
∂A0

�A0E + �
∂B
∂S12

� S12E + �
∂B
∂P12

�P12E 

      =
A1E
|P12| +

|S12|
P122

A0E +
|A0|
P122

S12E + �
A1

P122
+

2A0S12
P123

�P12E 

 

BE =
1

|P12| �A1E + �
S12
P12

�A0E + |C|S12E + �B +
S12
P12

C�P12E�       (80) 

 
The constituent values of X1, X2, Y1, A1, A0, A1E, and A0E are known, but P12E and S12E are not.  
We know that Z1 = X1+iY1 and Z2 = X2 − iY1 are the two greatest-magnitude, accurately-
calculated solutions of the quartic equation.  So, one option is to just set P12E = |P12| and 
S12E = |S12| where P12 = Z1Z2 and S12 = Z1 + Z2.  Equations (15) for A2 and (14) for A3 also 
suggest the option to set P12E = |A2| and S12E = |A3| because 

A2  =  Z1Z2+Z1Z3+Z1Z4+Z2Z3+Z2Z4+Z3Z4   ≈  Z1Z2 = P12    and 

A3  =  −(Z1+Z2+Z3+Z4)   ≈   −(Z1+Z2) = −S12 

when    |Z1| ≥ |Z2|   >>   |Z3| ≥ |Z4|.  This condition is the primary reason for performing the 
post processing.  Because we want P12E ε and S12E ε to be easily-calculated, reasonable, 
upper bounds of the round-off error in P12 and S12, we opt to calculate P12E and S12E as 

P12E = MAX(|P12|, |A2|) and S12E = MAX(|S12|, |A3|)         ⇒ 

P12E = MAX( |P12|, A2E) and S12E = MAX(|S12|, A3E) (81) 
 
To recalculate two small-magnitude solutions using a quadratic equation, the algorithm 
executes Equation (75) for X1, X2, and Y1; (76) for P12 and S12; (78) for C and B; (81) for P12E 
and S12E; and (79) and (80) for CE and BE.  It then invokes the Figure 8 quadratic-equation 
algorithm, whose outputs X3, X4, Y3 are the components of the recalculated, small-
magnitude, quartic-equation solutions  Z3 = X3 + iY3  and  Z4 = X4 − iY3. 

Recalculate a Simple Small-Magnitude Solution 
If ZMSQ(3) is not less than ZSQ_TH, then ZM(3), like ZM(2) and ZM(1), needs no recalculation; 
only ZM(4) has so small an absolute value that it requires recalculation.  ZM(4) is the only 
solution whose absolute value is so small, so it must be real.  The recalculated value will be 
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Z4 = X4 − iY3 = X4, so the algorithm sets Y3 = 0.  The value of Z3 = X3 + iY3 = X3 is likewise 
real and is selected from XM(3) and XM(1) as follows. 
 
If YM(1) > 0, then ZM(1) and ZM(2) are a complex conjugate pair, and ZM(3) is real.  The 
algorithm sets X1 = X2 = XM(1), Y1 = YM(1), and X3 = XM(3). 
 
If YM(1) is not greater than 0, then it equals 0, and ZM(1) = XM(1) is real.  In that case, 
solutions ZM(2) and ZM(3) are either both real, or they form a complex conjugate pair.  The 
algorithm accommodates either case by pairing ZM(2) and ZM(3) as output solutions Z1 and 
Z2 and pairing the real solutions ZM(1) and ZM(4) as output solutions Z3 and Z4.  The output 
real and imaginary components are calculated as  X1 = XM(2), X2 = XM(3), Y1 = YM(2), and 
X3 = XM(1). 
 
The algorithm finally calculates X4 as 

X4 = A0/[(X1X2 + Y12)X3]. 
This expression is correct because Equation (17) gives A0 as A0 = Z1Z2Z3Z4; Z3 = X3 and 
Z4 = X4 are real; and the product Z1Z2 is X1X2 + Y12. 
 
This concludes the description of the Figure 13 quartic-equation post-processing 
algorithm.  We demonstrate its operation with the Table I, Example 5 quartic-equation with 
the magnitude condition. 
 
Example Magnitude-Condition Quartic Equation (Table I, Example 5) 
The Example 5 quartic equation is 

Zn4  − 6.99970002 Zn3 − 2.099860005965×10 −3 Zn2  + 4.20000104993×10 −11  Zn −  2.1 × 10 −25 
= 0 

with true solutions:   7,   −3×10 −4,   2×10 −8,  and  5×10 −15.   This is an extreme example of 
the magnitude condition:  the absolute values of the quartic equation’s four solutions differ 
from each the other by many orders of magnitude.  Solving this magnitude-condition 
quartic equation demonstrates the operation and effectiveness of quartic-equation post 
processing. 
 
Solutions calculated with the Figure 2 quartic-equation algorithm (no round-off error 
mitigation) are 

7,  −3.00019431496×10 −4,    and   1.97157508097×10 −8   ±   i 2.41435601527×10 −6. 
Solutions calculated with the Figure 10 final quartic-equation algorithm, but without post 
processing are 

7,  −3.00000001152×10 −4,    1.00010177917×10 −8   and   1.00001391612×10 −8 

As expected, both algorithms calculate the large-magnitude solution, 7, accurately.  The 
calculated value of the second-greatest-magnitude solution, −3×10 −4, is considerably more 



Quartic-Equation Post Processing 

9/24/2021  Page 65 of 136 

accurate when using the Figure 10 final algorithm.  Without post processing, however, 
neither algorithm had success with the two smallest magnitude solutions. 

 
Table VIII, three and one-half pages long, lists all of the parameter values calculated by the 
mitigation design for the Example 5 quartic equation.  Each column corresponds to one of 
the mitigation-design algorithms: Figure 10 quartic-equation algorithm, Figure 13 Quartic-
Equation Post-Processing Algorithm, Figure 9 Final Cubic-Equation Algorithm, Figure 12 
Cubic-Equation Post-Processing Algorithm, and Figure 8 Final Quadratic-Equation 
Algorithm.  Entries enclosed in square brackets are input values, either from the user or 
from another algorithm in the table. 

Initial Solutions from the Quartic-Equation Algorithm 
The Figure 10 quartic-equation algorithm, using the coefficient inputs, A3, A2, A1, A0, detects 
no special cases, and so proceeds to calculate in straight-forward manner the coefficients 
a2, a1, and a0 of the resolvent cubic equation.  Also, the corresponding error size parameters 
a2E, a1E, and a0E.  The algorithm invokes the Figure 9 cubic-equation algorithm to solve the 
resolvent cubic equation. 
 
The cubic-equation algorithm takes over the parameter calculation with parameter q about 
2/3 of the way down the first page of the table.  The calculated absolute value of R = r2+q3 
is so small that R is reset to zero producing Special Case 3.  All three solutions of the 
resolvent cubic equation are real (y2 = 0), and two of the three real components z1, x2, and 
x3 have the same value.  In this case r is negative, so z1 and x2 equal each other.  On the 
table’s second page, the real components are calculated as z1 = x2 = 3.0627625056, and 
only slightly smaller x3 = 3.0622374881. 
 
The resolvent-cubic-equation solution components y2, z1, x2, and x3 are reported to the 
Figure 12 Cubic-Equation Post-Processing Algorithm, which finds that the three solution 
magnitudes are so close in value that no recalculation is necessary. 
 
These same values of y2, z1, x2, and x3 are therefore used by the quartic-equation algorithm 
to finish calculating the quartic-equation solution components: Y1, Y3, X1, X2, X3, and X4.  
Their values in the table are boxed in red.  If there were no post processing, these values 
would represent the final calculated solutions of the quartic equation. 
 
The calculated values listed in the table for Tx2, Tx3, X2, and X3 show an inconsistency: 
values of depressed solutions Tx2 and Tx3 are displayed as equal to each other, but the 
corresponding solutions X2 = Tx2 − C and X3 = Tx3 − C are not equal to each other.  Because 
the calculated solutions of the resolvent cubic equation reveal the multiplicity 2 condition 
z1 = x2 with r ≤ 0, the quartic-equation calculated solutions should show a corresponding 
multiplicity 2 condition:  Tx2 = Tx3 = −�x3  and  X2 = X3 =  −�x3 − C.   
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Table VIII.   Calculated Parameters for Example 5 Magnitude-Condition Quartic Equation 
Example 5 Quartic Equation: 
Zn4  − 6.99970002 Zn3 − 2.099860005965×10 −3 Zn2  + 4.20000104993×10 −11  Zn− 2.1 × 10 −25 = 0 
with solutions   7,    2×10 −8,    and    5×10 −15,   and    −3×10 −4 
Parameter 

Symbol 
Figure 10  Final 

Quartic-Equation 
Algorithm 

Figure 13 
Quartic-Equation 
Post-Processing 

Algorithm 

Figure 9 Final 
Cubic-Equation 

Algorithm 

Figure 12 
Cubic-Equation 
Post-Processing 

Algorithm 

Figure 8  Final 
Quadratic-
Equation 

Algorithm 

 [ε = 2−52 = 
2.2204460E-16] 

[ζ = 0.345] [ε = 2−52 = 
2.2204460E-16] 

[ζ = 0.345] [ε = 2−52 = 
2.2204460E-16] 

A3 [-6.99970002] [-6.99970002]    
A2 [-2.099860006] [-2.099860006]    
A1 [4.2000011E-11] [4.2000011E-11]    
A0 [-2.100000E-25] [-2.100000E-25]    
A0 = 0 FALSE     
A3E 6.99970002 [6.99970002]    
A2E 2.099860006 [2.099860006]    
A1E 4.2000011E-11 [4.2000011E-11]    
A0E 2.100000E-25 [2.100000E-25]    
C -1.749925005     
CE 1.749925005     
b2 -18.375524999     
b2E 36.748950137     
b1 -42.876837299     
b1E 128.623162701     
b0 -28.138326214     
b0E 112.546874587     
a2 -9.18776249938  [-9.1877624994] [-9.1877624994]  
a2E 18.374475069  [18.374475069] [18.374475069]  
a1 28.1383264898  [28.1383264898] [28.1383264898]  
a1E 112.5468751378  [112.546875138] [112.546875138]  
a0 -28.7253621366  [-28.725362137] [-28.725362137]  
a0E 172.3423256248  [172.342325625] [172.342325625]  

Calculations from the Figure 10 dashed red box are irrelevant and omitted here. 
q   -3.06270422E-08   
qE   75.0312501531   
qE ε   FALSE   
r   -5.36459765E-12   
rE   344.6846529378   
rE ε   FALSE   
R = r2+q3   5.02610450E-26   
RE   3.69840010E-09   
|R|  <  RE ε   TRUE   
R  reset   0   
q≥0 Or r=0   FALSE   
q = r = 0   FALSE   
R = 0   TRUE 

(Special Case 3)   

y2 [0]  0 [0]  
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Table VIII. Calculated Parameters for Example 5 Magnitude-Condition Quartic Equation 
(Page 2) 

Parameter 
Symbol 

Figure 10  Final 
Quartic-Equation 

Algorithm 

Figure 13 
Quartic-Equation 
Post-Processing 

Algorithm 

Figure 9 Final 
Cubic-Equation 

Algorithm 

Figure 12 
Cubic-Equation 
Post-Processing 

Algorithm 

Figure 8 Final 
Quadratic-
Equation 

Algorithm 
s = �−q   1.75005835E-04   
r > 0   FALSE   
t1   1.75005835E-04   
t2x   1.75005835E-04   
t3x   -3.50011670E-04   
z1 [3.0627625056]  3.0627625056 [3.0627625056]  
x2 [3.0627625056]  3.0627625056 [3.0627625056]  
x3 [3.0622374881]  3.0622374881 [3.0622374881]  
z1M    3.0627625056  
z2M    3.0627625056  
z3M    3.0622374881  
MIN(z1M, z2M, z3M) < ζ MAX(z1M, z3M)  FALSE (No Recalculation) 
Σ -1     
d 9.37890616195     
sz1 1.75007500000     
D 12.24999996500     
sD 3.49999999500     
D < 0 FALSE     
Y(1)=Y1 0 [0]    
Tx1 5.25007499500     
Tx2 -1.74992499500     
D 2.25015002E-08     
sD 1.50005001E-04     
D < 0 FALSE     
Y(3)=Y3 0 [0]    
Tx3 -1.74992499500     
Tx4 -1.75022500500     
X(1)=X1 7 [7]    
X(2)=X2 1.00010178E-08 [1.0001018E-08]    
X(3)=X3 1.00001392E-08 [1.0000139E-08]    
X(4)=X4 -3.00000001E-04 [-3.000000E-04]    
Y(2)=Y(1)  0    
Y(4)=Y(3)  0    
ZSQ(1)  49    
ZSQ(2)  1.00020357E-16    
ZSQ(3)  1.00002783E-16    
ZSQ(4)  9.00000007E-08    
ZMSQ(1)  49    
ZMSQ(2)  9.00000007E-08    
ZMSQ(3)  1.00020357E-16    
ZMSQ(4)  1.00002783E-16    
IIN(1)  1    
IIN(2)  4    
IIN(3)  2    
IIN(4)  3    
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Table VIII. Calculated Parameters for Example 5 Magnitude-Condition Quartic Equation 
(Page 3) 

Parameter 
Symbol 

Figure 10  Final 
Quartic-Equation 

Algorithm 

Figure 13 
Quartic-Equation 
Post-Processing 

Algorithm 

Figure 9 Final 
Cubic-Equation 

Algorithm 

Figure 12 
Cubic-Equation 
Post-Processing 

Algorithm 

Figure 8 Final 
Quadratic-
Equation 

Algorithm 

ZSQ_TH  5.832225    
ZMSQ(4) < ZSQ_TH TRUE    
XM(1)  7    
XM(2)  -3.00000001E-04    
XM(3)  1.00010178E-08    
XM(4)  1.00001392E-08    
YM(1)  0    
YM(2)  0    
YM(3)  0    
YM(4)  0    
ZMSQ(2) < ZSQ_TH TRUE    
X1  7    
Y1  0    
a0  3.00000000E-26 [3.0000000E-26] [3.0000000E-26]  
a1  -6.00000150E-12 [-6.000002E-12] [-6.000002E-12]  
a2  2.99980000E-04 [2.9998000E-04] [2.9998000E-04]  
X1E  7    
a0E  6.00000000E-26 [6.0000000E-26] [6.0000000E-26]  
a1E  1.20000030E-11 [1.2000003E-11] [1.2000003E-11]  
a2E  5.99960001E-04 [5.9996000E-04] [5.9996000E-04]  
q   -1.00006667E-08   
qE   3.99986669E-08   
|q|  <  qE ε   FALSE   
r   -1.00009999E-12   
rE   6.00000001E-12   
|r|  <  rE ε   FALSE   
R = r2+q3   -3.00039853E-32   
RE   2.40024001E-23   
|R|  <  RE ε   FALSE   
q = r = 0   FALSE   
R = 0   FALSE   
r = 0   FALSE   
R > 0   FALSE   
θ   3.14141945432   
φ1   1.04713981811   
φ2   -1.04725528429   
φ3   3.14153492050   
t1   1.00013333E-04   
t2x   9.99933333E-05   
t3x   -2.00006667E-04   
y2   0 [0]  
z1   2.00000001E-08 [2.0000000E-08]  
x2   4.92168155E-15 [4.9216816E-15]  
x3   -3.00000000E-04 [-3.000000E-04]  
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Table VIII. Calculated Parameters for Example 5 Magnitude-Condition Quartic Equation 
(Page 4) 

Parameter 
Symbol 

Figure 10  Final 
Quartic-Equation 

Algorithm 

Figure 13 
Quartic-Equation 
Post-Processing 

Algorithm 

Figure 9 Final 
Cubic-Equation 

Algorithm 

Figure 12 
Cubic-Equation 
Post-Processing 

Algorithm 

Figure 8 Final 
Quadratic-
Equation 

Algorithm 

z1M    2.00000001E-08  
z2M    4.92168155E-15  
z3M    3.00000000E-04  
MIN(z1M, z2M, z3M) < ζ MAX(z1M, z3M)  TRUE  
y2 = 0    TRUE  
z1M > z3M    FALSE  
xA = x3    -3.00000000E-04  
z1M ≥ z2M    TRUE  
z1M > ζ z3M    FALSE  
C    1.00000000E-22 [1.0000000E-22] 
B    -2.00000050E-08 [-2.000001E-08] 
xAE    3.00000000E-04  
CE    3.00000000E-22 [3.0000000E-22] 
BE    6.00000150E-08 [6.0000015E-08] 
|B| > BE ε AND |C| > CE ε   TRUE  
C = 0     FALSE 
D     3.99999800E-16 
DE     2.40000240E-15 
|D|  <  DE  ε     FALSE 
D > 0     TRUE 
y2 = Y    [0] 0 
Q     2.00000000E-08 
B ≥ 0     FALSE 
xq1=X1    [2.0000000E-08] 2.00000000E-08 
xq2=X2    [5.0000000E-15] 5.00000000E-15 
y2 = 0    TRUE  
xA  > xq1    FALSE  
z1  [2.0000000E-08]  2.00000000E-08  
x2  [5.0000000E-15]  5.00000000E-15  
x3  [-3.000000E-04]  -3.00000000E-04  
y2  [0]  0  
X2 = z1  2.00000000E-08    
X3 = x2  5.00000000E-15    
X4 = x3  -3.00000000E-04    
Y3 = y2  0    

 
The table to the right shows the pertinent calculated 
parameter values to 14 decimal places.  The calculated 
values of Tx2 and Tx3 are not truly equal to each other; 
they differ starting in the 12th decimal place.  They 
only appear to be equal in Table VIII because it shows 

Tx2 =  −�x3 = −1.74992499499898 
Tx3 =  −1.74992499499986 
C = −1.74992500500000 
X2 =   0.00000001000102 
X3 =   0.00000001000014 



Quartic-Equation Post Processing 

9/24/2021  Page 70 of 136 

only the first eleven decimal places.  The value of Tx2 is calculated correctly as −�x3, but 
the quartic-equation algorithm introduces some round-off error into the Tx3 value. 
 
The effect of the round-off error becomes obvious when C, which is close in value to Tx2 and 
Tx3, is subtracted to produce X2 and X3. 
 
This sort of round-off error discrepancy can be avoided if the algorithm reverts to the Txn 
formulas in Figure 11 (Solutions of the Depressed Quartic Equation) whenever y2 = 0 and 
x3 ≥ 0.  That is, whenever the three resolvent-cubic-equation solutions are all nonnegative 
real.  Such refinement is unnecessary, however, because the discrepancy problem occurs 
only under the magnitude condition, for which the relevant Xn values (X2 and X3) are 
recalculated in post processing. 

Post-Processing Recalculation of Three Small-Magnitude Solutions 
Using the initial solution component values boxed in red, Y(1), Y(3), X(1), X(2), X(3), and 
X(4), the quartic-equation post-processing algorithm sets Y(2) = Y(1), Y(4) = Y(3), and 
calculates the square ZSQ(k) of the solution absolute values, Equation (62). 
 
The Value-Ordering Routine, Figure 14, returns these same square values in value order as 
ZMSQ(k) and the index function IIN(k) so that 

ZMSQ(1)  ≥  ZMSQ(2)  ≥  ZMSQ(3)  ≥  ZMSQ(4)      and      ZSQ[IIN(k)] = ZMSQ(k). 

ZMSQ(1) = 49 is the greatest ZSQ(k). 
 
The algorithm calculates ZSQ_TH = ZMSQ(1) ζ2 = 12.25, which value is listed at the top of 
Table VIII, Page 3.  This ZSQ_TH value becomes the threshold for ZMSQ(k) less than ZMSQ(1): if 
ZMSQ(k) < ZSQ_TH, then solution ZM(k) will be recalculated.  ZMSQ(4) = 1.00002783×10−16 is 
the smallest ZMSQ(k), and ZMSQ(4) < ZSQ_TH is TRUE, so at least ZM(4) requires recalculation. 
 
Post processing uses Equation (64) to calculate the real and imaginary components XM(k) 
and YM(k) of the ordered solution ZM(k). 
 
The second greatest ZMSQ(k) value is ZMSQ(2) = 9×10−8, and ZMSQ(2) < ZSQ_TH is TRUE, so 
solutions ZM(2), ZM(3), and ZM(4) will all be recalculated as solutions of a cubic equation.  
Of the solutions calculated by the quartic-equation algorithm, only the greatest-magnitude 
real solution ZM(1) is reliable.  Its components are relabeled X1 = XM(1) = 7 and Y1 = 0.  
The values in the table are boxed in green to denote components of a final solution. 
 
Post processing next calculates the cubic-equation coefficients a2, a1, and a0 and their error 
size parameters a2E, a1E, and a0E.  These are the input parameters required for the cubic-
equation algorithm to recalculate quartic-equation solutions ZM(2), ZM(3), and ZM(4). 
 
The cubic-equation algorithm, Figure 9, takes over calculation about half way down the 
Page 3 of the table.  No special cases apply, and R > 0 is FALSE, so Viète computation 
produces the three real cubic-equation solutions.  The components y2, z1, x2, and x3 (bottom 
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of page 3 of the table) are turned over to cubic-equation post processing, which takes over 
computation at the top of Page 4. 
 
The cubic-equation post processing calculates the absolute values z1M, z2M, and z3M.  The 
least of these is MIN(z1M, z2M, z3M) = z2M = 4.92×10−15.  The greatest is MAX(z1M, z3M) = 
z3M = 3×10−4.  Because MIN(z1M, z2M, z3M) < ζ MAX(z1M, z3M) is TRUE, at least one of the 
three cubic-equation solutions requires recalculation.  With imaginary component y2 = 0, 
either z1 or x3 must be the real value of greatest absolute value.  Computation finds 
z1M > z3M is FALSE, so real solution x3 has greatest magnitude, and xA is set equal to 
x3 = −3×10−4.  This xA value will become one of the quartic equation’s computed solutions. 
 
Evaluation shows z1M ≥ z2M is TRUE, so solution z1 has the second greatest absolute value.  
Because z1M > ζ z3M is FALSE, the two small-magnitude solutions z1 and x2 will both be 
recalculated as solutions of a quadratic equation.  The processing calculates the quadratic 
equation coefficients C and B and the corresponding error size parameters CE and BE. 
 
These values are passed on to the quadratic-equation algorithm, which takes over 
computation half way down Page 4 of the table in the last column.  No special case applies, 
and determinate D > 0, so calculation proceeds with Numerical Recipes to find the two real 
solutions X1 = 2×10−8 and X2 = 5×10−15 (Y = 0). 
 
These values are passed back to cubic-equation post processing with labels xq1 = X1, 
xq2 = X2, y2 = Y, to complete its calculation.  The cubic-equation’s large-magnitude solution 
xA = −3×10−4 is less than xq1 = 2×10−8, so the cubic-equation’s solution components are 
assigned as follows: 

z1 = xq1 = 2×10−8,          x2  = xq2 = 5×10−15,           x3 = xA = −3×10−4       and         y2  =   0. 
 
Finally, these components of the three cubic-equation solutions are passed back to the 
quartic-equation post-processing algorithm, where they are relabeled as components of the 
quartic equation’s three small-magnitude solutions. 

X2 = z1 = 2×10−8,          X3  = x2 = 5×10−15,           X4 = x3 = −3×10−4       and         Y3 = y2  =   0 

These values at the end of the table are boxed in green to show that they are components of 
final solutions.  They join the components X1 = 7 and Y1 = 0 calculated earlier. 
 
All of these calculated values are accurate with solution relative error less than 1×10−16. 
 
This completes our description of quartic-equation post processing and the entire round-
off-error mitigation design.  The following section is an error analysis of that design for 
multiplicity and multiplicity near-miss conditions. 
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VII. ERROR ANALYSIS SUMMARY FOR MULTIPLICITY AND MULTIPLICITY NEAR-MISS 

This section and the following three show that the mitigation design provides excellent 
solution accuracy for the multiplicity and multiplicity near-miss conditions.  Previous 
sections have shown how the design addresses round-off error magnification for the 
multiplicity and magnitude conditions.  We also showed how the design eliminates error 
magnification for quartic-equation symmetry and symmetry near miss.  See the Section IV 
subsection on the Example 3 Quartic Equation Symmetry Condition and the Section V 
subsection on the  Quartic-Equation Symmetry Near Miss (Table I, Example 4).  Here for 
the first time, we address algorithm performance for the multiplicity near-miss condition. 
 
This analysis, which examines quadratic and cubic equations, does not specifically address 
quartic equations.  This is because the mitigation design automatically addresses solution-
error magnification in quartic equations by providing accurate solutions to cubic and 
lower-order equations.  Quartic-equation multiplicity, symmetry, and their near misses 
have a corresponding special-case condition in the Euler resolvent cubic equation as 
detailed in Figure 11.  Accurate solutions to the resolvent cubic equation produce accurate 
quartic equation solutions.  Post processing accurately calculates quartic-equation small-
magnitude solutions as accurate solutions of cubic, quadratic, or linear equations. 
 
The analysis in these last four sections is based on the fundamental concepts of 
quantum uncertainty, zero-guard range, and relative coefficient error. 
 
Quantum Uncertainty 
To establish the computer’s solution accuracy limit, we define the concept of quantum 
uncertainty (QU).  Let zn be a true root of the polynomial function 

p(z) = � akzk
N

k=0

 

where coefficient aN = 1.  Then p(zn) = 0.  Now add a small positive value δz to zn, and ask 
the question: “How great must δz be so that the computed value of p(zn+δz) changes from 
zero?”.  To be sure that p(zn+δz) is not computed as zero, δz must be at least as great as 
|zn|ε, the magnitude represented by zn’s least significant bit.  Otherwise, the value zn+δz 
could be stored in the computer as zn.  Usually, however, δz must be greater than |zn|ε. 
 
Consider the root z3 = 1 from the Table I, Example 1 polynomial p(z) = z3 − 5z2 + 8z − 4 = 
(z−1)(z−2)2.  The magnitude of the root’s least significant bit is |z3|ε = ε ≈ 2.22×10−16.  The 
computer evaluates the polynomial p(z) at z = z3 = 1 as the sum of its four terms: 
p(1) = 1 − 5 + 8 − 4 = 0.  The least significant bit of p(1) is the least significant bit of the 
greatest-magnitude term 8 of the sum.  The magnitude represented by that bit is therefore 
δp = |8|ε = 8ε.  The true value of p(z3 + δz) = p(1 + δz) is 

p(1+δz) = (1+δz − 1)( 1+δz − 2)2 = δz(δz − 1)2 = δz3 − 2δz2 + δz ≈ δz for |δz| << 1. 

To assure that the value of p(1+δz) is not calculated as p(1) = 0, the value δz must satisfy 
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p(1+δz) ≈ δz   ≥   δp = 8ε ≈ 1.78×10−15. 

The simple root z3 = 1 of p(z) could be calculated on the computer anywhere in the range 
1 ≤ zn < 1+8ε.  We call the magnitude of this range the quantum uncertainty (QU) of root 
z3 = 1.  The quantum uncertainty value is designated |δz|QU: 

|δz|QU = 8ε ≈ 1.78×10−15   for root z3 = 1. 
 
We define the relative quantum uncertainty |δz/z3|QU as the ratio of the quantum 
uncertainty |δz|QU to the absolute value of the true root z3 = 1.  For this case then 

|δz/z3|QU  ≡  |δz|QU/|z3|  =  8ε/1  =  8ε ≈ 1.78×10−15. 
 
The double root z1 = z2 = 2 of this same polynomial has a much greater relative quantum 
uncertainty as we now show.  The computer evaluates p(2) as the sum of its terms: 
p(2) = 23 − 5(22) + 8(2) − 4 = 8 − 20 + 16 − 4 = 0.  The least significant bit of p(2) is the 
least significant bit of the greatest-magnitude term, 20.  The magnitude represented by that 
bit is therefore δp = |20|ε = 20ε.   The true value of p(z1 + δz) = p(2 + δz) is 

p(2+δz) = (2+δz − 1)( 2+δz − 2)2 = (1+δz)δz2  ≈ δz2 for |δz| << 1. 

To assure that the value of p(2+δz) is not calculated as p(2) = 0, the value δz must satisfy 

p(2+δz) ≈ δz2   ≥   δp = 20ε     ⇒     |δz|  ≥  √20ε     ⇒  |δz|QU = √20ε. 

The relative quantum uncertainty for the double root z1 = z2 = 2 is therefore 

|δz/z1|QU  ≡  |δz|QU/|z1|  =  √20ε/2  =  √5ε  ≈ 3.33×10−8  for double root z1 = z2 = 2. 

This relative quantum uncertainty for the double root z1 = z2 = 2 is over seven orders of 
magnitude greater than that for root z3 = 1. 

The relative quantum uncertainty |δz/zn|QU is on the order of ε for a simple root, ε1/2 for a 
double root, and ε1/3 for a triple root. 
 
The general procedure for calculating quantum uncertainty of root zn of polynomial 

p(z) = zN + aN−1 zN−1 + . . . + a0 
is as follows.  Calculate the polynomial’s bit size at z = zn as  

δp = MAX(|znN|, |aN−1znN−1|,⋯ , |a0|)ε. 
Solve the polynomial equation  

p(zn + δz) = ±δp 

for the uncertainty δz using either sign for δp on the right.  The choice makes little 
difference.  The quantum uncertainty for root zn is the absolute value of δz, and is 
designated |δz|QU.  The relative quantum uncertainty is |δz/zn|QU. 
 
We deviate slightly from this definition of relative quantum uncertainty when the root is a 
multiplicity near-miss root.  Suppose roots zn and zn+1 are a pair of such roots given by 

zn = x0 + ∆z            and            zn+1 = x0 − ∆z 
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where x0 is nonzero real and |∆z| < |x0|.  The displacement ∆z from x0 is either real with 
∆z = ∆x > 0, or ∆z is pure imaginary with ∆z = i∆y and ∆y > 0.  The phrase “near-miss” 
implies that |∆z| << |x0|.  We simplify the calculation of the relative quantum uncertainty by 
using x0 rather than zn = x0 + ∆z to normalize quantum uncertainty |δz|QU.  That is, we take 
|δz/x0|QU as the relative quantum uncertainty rather than |δz/zn|QU. 

 
Zero-Guard Processing and Zero-Guard Range 
Our mitigation design avoids large error magnification for multiple solutions by 
anticipating and accommodating the multiplicity condition.  For quadratic equations 
Zn2 + BZn + C = 0, the Figure 8 algorithm calculates the discriminate’s error size parameter 
DE.  If the calculated discriminate magnitude |D| is so small that |D| < DE ε, then the 
calculated D value is reset to zero, and the algorithm calculates the two quadratic-equation 
solutions as the appropriate double solution Z1 = Z2 = X1 = X2 = −B/2 with imaginary 
component Y = 0. 
 
The Figure 9 cubic-equation algorithm avoids multiplicity error magnification in similar 
fashion.  If the magnitude |R| is so small that |R| < RE ε, then the calculated R value is reset to 
zero, and the algorithm properly calculates the three real solutions, two of which are the 
same real value (Special Case 3).  If the cubic equation is the resolvent cubic equation of a 
quartic equation, then the quartic-equation solutions are properly calculated, with two of 
them set equal to the same real value. 
 
This process whereby an algorithm performs the test  |D| < DE ε  or  |R| < RE ε  to determine 
whether D or R is reset to zero, we refer to as zero-guard processing.  The range of D values 
(−DE ε, DE ε) about D = 0 corresponds to a range of quadratic-equation solution values 
(−B/2 − ∆Z,  −B/2 + ∆Z) about the double solution value Z1 = Z2 = X0 = −B/2.  We call the 
positive, real value ∆Z the zero-guard range |∆Z|ZG about −B/2.  Similarly, the range of R 
values (−RE ε, RE ε) about R = 0 corresponds to a range of solution values (z0−∆z,  z0+∆z) 
about a double solution z0 of a cubic equation.  We call ∆z the zero-guard range |∆z|ZG about 
z0. 
 
The relative zero-guard ranges for the quadratic equation and cubic equation are denoted 

|∆Z/X0|ZG  ≡  |∆Z|ZG/|X0|          and         |∆z/x0|ZG  ≡  |∆z|ZG/|x0|. 
 
The zero-guard range |∆z|ZG is a potential error caused by the zero-guard processing.  For if 
two true near-miss solutions are z2 = z0 + ∆z and z3 = z0 − ∆z where  0 < |∆z| < |∆z|ZG, then 
the zero-guard processing will incorrectly calculate the two solutions as a double solution 
z2 = z3.  We use the ratio of zero-guard range to the double-root quantum uncertainty as a 
measure of our ability to keep the size of |∆z|ZG under control. 

ZG/QU =
|∆z/x0|ZG
|δz/x0|QU

 . 

Zero-guard processing also includes the Figure 9 cubic-equation processing for Special 
Case 2 (q = r = 0, multiplicity 3) and Special Case 4 (r = 0, three evenly spaced solutions). 
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Relative Coefficient Error 
Relative coefficient error measures the accuracy with which the set of calculated solutions 
reproduces the input coefficients via the check equations.  For a cubic equation with input 
coefficients a2, a1, and a0, the three relative coefficient errors are 

δa2u ≡ �
a2C − a2

a2
� ,      δa1u ≡ �

a1C − a1
a1

� ,      δa0u ≡ �
a0C − a0

a0
� .                    (82) 

where the calculated solution values z1C, z2C = x2C + iy2C, and z3C = x3C − iy2C are applied to 
the check equations (either Equations (2) or (3)) to calculate the check coefficients a2C, a1C, 
and a0C.  The relative coefficient errors provide a measure of an algorithm’s accuracy 
without a priori knowledge of the true solutions. 
 
Corresponding definitions apply to the quadratic equation Zn2 + BZn + C = 0 with 
coefficients B and C and calculated solutions Z1C and Z2C.  The check coefficients are 

BC = −(Z1C + Z2C)                  CC = Z1C Z2C 

and the relative coefficient errors are 

δBu ≡ �
BC − B

B
�          and          δCu ≡ �

CC − C
C

�.                                                

 
Error Analysis Summary 
Sections VIII through X examine the quantum uncertainty, zero-guard range, and relative 
coefficient error of multiple and multiple near-miss solutions of quadratic and cubic 
equations.  We show that the relative coefficient error induced by zero-guard processing is 
a maximum of 3.3×10−15 for cubic equations and the ratio ZG/QU is less than 2.3. These 
values are even smaller for quadratic equations. 
 
Section VIII addresses multiplicity 2 solutions (X0) and multiplicity 2 near-miss solutions 
(X0 ± ∆Z where |∆Z| << |X0|) in quadratic equations.  We will also call these double 
solutions and double near-miss  solutions.  When ∆Z = 0 so that two real solutions are 
exactly equal to each other, then the relative quantum uncertainty |δZ/X0|QU is √2ε ≈ 
2.11×10−8.  The relative zero-guard range is |∆Z/X0|ZG = √3ε ≈ 2.58×10−8, 22% higher than 
the quantum uncertainty:  ZG/QU = 1.22.  When the zero-guard range is in effect 
(∆Z < |∆Z|ZG), then the maximum relative coefficient errors are δBu = 0 and 
δCu = 6.66×10−16.   
 
Sections IX and X demonstrate that our mitigation design provides good calculation 
accuracy for cubic equations. 
 
Section IX addresses multiplicity 3, its near miss, and multiplicity 2.  Two solutions have the 
same real value x0, and a third real solution is xA.  The difference xA − x0 drops to zero to 
create the multiplicity 3 condition.  For multiplicity 3 (xA = x0), we show that the relative 
quantum uncertainty |δz/z0|QU is (3ε)1/3 ≈ 8.73×10−6.  The maximum relative solution error 
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imposed by zero-guard processing is 15% greater at 1×10−5, but the corresponding relative 
coefficient errors (Equation (82)) are small at δa2u = δa1u = 0, and δa0u = 2×10−15.  As the 
relative separation |(xA − x0)/x0| becomes large, then relative quantum uncertainty |δz/z0|QU 
for the double solution x0 approaches (2ε)1/2 ≈ 2.11×10−8;  relative quantum uncertainty 
|δz/zA|QU for the simple solution xA approaches ε ≈ 2.22×10−16. 
 
Section X addresses multiplicity 2 near miss.  The three cubic-equation solutions are now  
z1 = xA, z2 = x0 + ∆z and z3 = x0 − ∆z where ∆z is either a positive real value ∆x or a positive 
pure imaginary number i∆y.  Relative quantum uncertainties for the near-miss solutions 
are calculated as a function of η ≡ xA/x0 and ∆z/x0.  The relative zero-guard range |∆z/z0|ZG 
is a function η, but can change dramatically if post processing recalculates the two near-
miss solutions when |x0| < |xA|.  The recalculation occurs approximately when 
|x0/xA| = |1/η| < |ζ| where ζ is the Figure 12 post-processing constant.  With the proper 
choice of ζ value, post processing not only eliminates magnification of magnitude-type 
round-off error, but it also controls the size of zero-guard range. 
 
Section X shows that the selected value ζ = 0.345 minimizes relative coefficient error 
induced by zero-guard processing.  With this ζ value, the relative coefficient error induced 
by zero-guard processing is a maximum of 3.3×10−15 for all three coefficients and the 
maximum ratio ZG/QU is 2.3. 
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VIII. QUADRATIC EQUATION ERROR ANALYSIS 

For quadratic equations Zn2 + BZn + C = 0, we show that zero-guard processing in the 
Figure 8 algorithm produces excellent solution accuracy: ZG/QU = 1.22 and relative 
coefficient errors δBu = 0 and δCu = 6.66×10−16 when the zero-guard range is in effect 
(∆Z < |∆Z|ZG).  This accuracy, however, is no better than that provided by the preliminary 
Numerical Recipes algorithm of Figure 4 for stand-alone quadratic equations in which the 
user enters coefficients B and C.  As we demonstrate, it is solution accuracy for cubic and 
quartic equations with multiplicity (or multiplicity near miss) that requires the quadratic-
equation algorithm to have zero-guard processing. 
  
The quadratic polynomial P(Z) with roots Z1 = X1 + iY and Z2 = X2 − iY is written 

P(Z) = Z2 + BZ + C       where        B = −(Z1 + Z2)   and   C = Z1Z2. 

The solutions Z1 and Z2 are both real with X1 ≥ X2, Y = 0, or else they form a complex 
conjugate pair with X1 = X2, Y > 0.  The quadratic equation is 

P(Z1) = P(Z2) = Zn2 + BZn + C = 0. 
 
To analyze quantum uncertainty and zero-guard range for multiplicity and multiplicity 
near-miss conditions, define the solutions Z1 and Z2 as 

Z1 = X0 + ∆Z            and            Z2 = X0 − ∆Z 

where X0 is nonzero real and |∆Z| < |X0|.  The displacement ∆Z from X0 is either real with 
∆Z = ∆X ≥ 0, or ∆Z is pure imaginary with ∆Z = i∆Y and ∆Y > 0.  The coefficients become 

 B = −2X0                      C = X02− ∆Z2                 |∆Z| < |X0|. (83) 

The polynomial at Z = Z1 becomes  

 P(Z1)   =   (X0 + ∆Z)2   −    2X0(X0 + ∆Z)   +   X02 − ∆Z2    =    0. (84) 
 
Equation (84) is symmetric with respect to both ∆Z = 0 and X0 = 0.  That is,  

P(Z1) = P(X0 + ∆Z) = P(X0 − ∆Z) = P(Z2) = 0   and 

P(−X0 + ∆Z) = (−X0 + ∆Z)2 − 2(−X0)(−X0 + ∆Z) + (−X0)2 − ∆Z2  =  0  =  P(X0 + ∆Z) 
We therefore impose the convention 

X0 > 0 

in order to simplify the analysis without loss of generality. 
 
Quadratic Equation Quantum Uncertainty 
The quantum uncertainty of solution Z1 is the minimum absolute value |δZ| which assures 
that the computed polynomial P(Z1 + δZ) in Equation (84) is nonzero.  Of the three terms 
in P(Z1), the second term, −2X0(X0 + ∆Z), has the greatest magnitude under our restriction 
|∆Z| < |X0|.  The magnitude of the polynomial’s least significant bit is therefore  
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δP = PE ε = 2|X0(X0 + ∆Z)|ε. 

PE = 2|X0(X0+∆Z)| is the polynomial’s error size parameter. 
 
We find the quantum uncertainty of solution Z1 by adding error δZ to Z1, and solving the 
following equation for |δZ|: 

 P(Z1 + δZ) = ±δP    where   δP = PE ε = 2|X0(X0+∆Z)| ε. (85) 

The right side of this equation may be either +δP or −δP.  We start with +δP and then show 
that the resulting quantum efficiency differs little from that using  −δP.  
 
The easiest way to proceed is to first normalize Z1 + δZ by X0.  The normalization allows us 
to calculate the relative quantum uncertainty |δZ/X0| = |δZ/X0|QU as a function of the 
multiplicity relative miss ∆Z/X0. 
 
Use +δP on the right side of Equation (85), and divide Equations (84) and (85) by X02: 

P(Z1)
X02

= �1 +
∆Z
X0
�
2

− 2 �1 +
∆Z
X0
� + 1 − �

∆Z
X0
�
2

= 0 

P(Z1 + δZ)
X02

= �1 +
∆Z
X0

+
δZ
X0
�
2

− 2 �1 +
∆Z
X0

+
δZ
X0
� + 1 − �

∆Z
X0
�
2

= 2 �1 +
∆Z
X0
� ε . 

Subtract the first equation from the second and simplify to obtain the general quadratic 
equation for relative quantum uncertainty δZ/X0. 

�
δZ
X0
�
2

+ 2 
∆Z
X0

 
δZ
X0

− 2 �1 +
∆Z
X0
� ε = 0     for     P(Z1 + δZ) = δP                  (86) 

 
If the displacement ∆Z is real (∆Z = ∆X ≥ 0), then the pertinent solution is also real and 
given by 

�
δZ
X0
�
QU

=
δX
X0

=
2(1 + ∆X/X0)ε

|∆X/X0| + �(∆X/X0)2 + 2(1 + ∆X/X0)ε
          for ∆Z = ∆X and

P(Z1 + δZ) = δP.            (87) 

This solution provides the relative quantum uncertainty as a function of the real relative 
near-miss value ∆X/X0.  Figure 15 below provides linear and log-log plots of |δX/X0|QU  vs 
∆X/X0 that show how quantum uncertainty decreases as ∆X/X0 increases from zero.  At the 
multiplicity condition ∆X = 0, the right side of Equation (87) collapses to √2ε. 

�
δZ
X0
�
QU

=
δX
X0

= √2ε ≈ 2.11×10−8    for the multiplicity condition  ∆Z = ∆X = 0.   (88) 

 
When relative miss |∆Z/X0| satisfies  √2ε << ∆X/X0 << 1, then the numerator in (87) 
collapses to 2ε, the denominator collapses to 2|∆X/X0|, and |δX/X0|QU becomes 

|δZ X0⁄ |QU =
ε

∆X/X0
       for  √2ε ≪  ∆X/X0  ≪ 1.                                 (89) 



Quadratic Equation Error Analysis 

9/24/2021  Page 79 of 136 

 
Figure 15   Quantum Uncertainty for Quadratic-Equation Multiplicity Real Near Miss 

 
Finally, when ∆X/X0 = 1, then the radicand in (87) is 1 + 4ε ≈ 1, the denominator is 2, the 
numerator is 4ε, and |δZ/X0|QU is 

 |δZ/X0|QU = δZ/X0 = 2ε       for   ∆X/X0 = 1. (90) 
 
The displacement ∆Z may also be imaginary: ∆Z = i∆Y  where ∆Y ≥ 0.  In that case, the error 
value δZ is complex: δZ = δX + iδY.  The left side of Equation (86) then consists of both a 
real part and an imaginary part. 

�
δX
X0

+ i
δY
X0
�
2

+ 2i
∆Y
X0

 �
δX
X0

+ i
δY
X0
� − 2 �1 + i

∆Y
X0
� ε = 0 

 

�
δX
X0
�
2

− �
δY
X0
�
2

− 2
∆Y
X0

δY
X0

− 2ε + i2 �
δX
X0

δY
X0

+
∆Y
X0

δX
X0

−
∆Y
X0

ε� = 0 

 
The real and imaginary components each equal zero. 

�
δX
X0
�
2

− �
δY
X0
�
2

− 2
∆Y
X0

δY
X0

− 2ε = 0            (Real Part)                              (91) 

 
δX
X0
�
δY
X0

+
∆Y
X0
� −

∆Y
X0

ε = 0                          (Imaginary Part)                    (92) 

Add (∆Y/X0)2 to both sides of (91) and rearrange as 

�
δX
X0
�
2

+  �
∆Y
X0
�
2

− 2ε  = �
δY
X0

+
∆Y
X0
�
2

.                                          (93) 

Relative 
Quantum 
Unertainty 

�
δX
X0
�
QU

 

Multiplicity Relative Miss ∆X/X0 

Quadratic Equation Solutions Are   X0 + ∆X   And   X0 − ∆X. 

Relative 
Quantum 
Unertainty 

�
δX
X0
�
QU

 

Multiplicity Relative Miss ∆X/X0 

|δX/X0|QU = √2ε ≈ 2.11×10−8 

|δX/X0|QU =
ε

∆X/X0
 

 |δX/X0|QU = 2ε ≈ 4.44×10−16 
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Rearrange (92) as 
δY
X0

+
∆Y
X0

= �
∆Y
X0

ε� �
δX
X0
��  .                                                         (94) 

The right side of (93) is the square of the left side of (94).  Square Equation (94); then 
substitute the squared right side for the right side of (93).  Simplify to obtain a quadratic 
equation in (δX/X0)2. 

��
δX
X0
�
2

�
2

+ BδX  �
δX
X0
�
2

+ CδX = 0   where   BδX = �
∆Y
X0
�
2

− 2ε,     CδX = − �
∆Y
X0
�
2

ε2          (95) 

Apply the Equation (95) solution value (δX/X0)2 to Equation (91) to produce a quadratic 
equation in δY/X0. 

�
δY
X0
�
2

+ BδY �
δY
X0
� + CδY = 0    where   BδY = 2 �

∆Y
X0
� ,    CδY = 2ε − �

δX
X0
�
2

          (96) 

 
The Figure 8 quadratic-equation algorithm provides the two solutions for each of 
Equations (95) and (96).  The two solutions of (95) have opposite signs as indicated by the 
equation’s negative constant coefficient,  CδX = −(∆Y/X0)2 ε2.  We use the positive solution 
for (δX/X0)2, and then take its positive square root for δX/X0.  The positive square-root 
value is required in order that δX/X0 matches Equation (88),  δX/X0 = √2ε, at the 
multiplicity condition ∆Z = ∆X = ∆Y = 0.  Notice that at multiplicity, when ∆Y = 0 and 
δX/X0 = √2ε, Equation (96) collapses to (δY/X0)2 = 0. 
 
The two solutions of Equation (96) for δY/X0 are each negative or zero because both 
coefficients, BδY = 2(∆Y/X0) and CδY = 2ε − (δX/X0)2, are nonnegative.  We select the greater 
solution for |δY/X0|QU (solution of lesser absolute value) because it satisfies (94) as 
required. 
 
Figure 16 below plots the calculated relative quantum uncertainty for imaginary near miss 
∆Z = i∆Y.  The dashed blue curve is the real component δX/X0 of δZ/X0, the dashed yellow 
curve is the negative imaginary component −δY/X0 of δZ/X0, and the solid black curve is the 
total (the relative quantum uncertainty): |δZ/X0|QU = [(δX/X0)2 + (δY/X0)2]1/2. 
 
The most obvious feature of the plot is the dramatic change in behavior of both the real and 
imaginary components at the critical displacement  ∆Y/X0 = √2ε ≈ 2.11×10−8.  As ∆Y/X0 
increases through this value, the linear coefficient BδX = (∆Y/X0)2 − 2ε of Equation (95) 
changes sign from negative to positive.  The sign change in BδX then changes the nature of 
the equation’s positive solution (δX/X0)2.  The equation’s constant coefficient is 
CδX = −(∆Y/X0)2 ε2, so the determinate is 

 DδX = B2δX − 4CδX = (∆Y/X0)4 − 4(∆Y/X0)2(ε − ε2) + 4ε2. (97) 

When ∆Y/X0 = √2ε, and BδX = 0, then DδX = − 4CδX = 4(∆Y/X0)2 ε2.  Unless ∆Y/X0 is close to 
the critical displacement √2ε, however, the difference (ε − ε2) = ε(1 − ε) in Equation (97) 
may be written as ε, and DδX becomes 
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DδX ≈ (∆Y/X0)4 − 4(∆Y/X0)2ε + 4ε2 = [(∆Y/X0)2 − 2ε]2 = BδX2. 

The formula for Q in the Figure 8 quadratic-equation algorithm is Q = (|B| +�|D|)/2.  So, Q 
for Equation (95) is 

QδX =
1
2
�|BδX| + �|DδX|� ≈

1
2

(|BδX| + |BδX|) = |BδX| = |(∆Y/X0)2 − 2ε|. 

This approximation for QδX is excellent unless |(∆Y/X0)2 − 2ε|/(2ε) < 1×10−6.  That is, 
QδX ≅ |BδX | unless ∆Y/X0 is extremely close to  √2ε. 
 
Figure 16   Quantum Uncertainty for Quadratic-Equation Multiplicity Imaginary Near Miss 

 
When (∆Y/X0)2 < 2ε, then BδX = (∆Y/X0)2 − 2ε is negative.  The Figure 8 algorithm gives the 
solution of Equation (95) for (δX/X0)2 as QδX, which implies that δX/X0 is: 

δX X0⁄ = �QδX = �|BδX| = �|2ε− (∆Y/X0)2|   for ∆Y/X0 < √2ε  ≈  2.11×10−8           (98)    
 
When (∆Y/X0)2 > 2ε, then BδX = (∆Y/X0)2 − 2ε changes sign to positive, and the Figure 8 
quadratic-equation algorithm gives the solution of Equation (95) as − CδX / QδX.  The 
formula for δX/X0 becomes 
 

Multiplicity Imaginary Relative Miss ∆Y/X0 

Relative 
Quantum 

Unertainty 

�
δZ
X0
�
QU

 

Quadratic Equation Solutions Are   X0 + i∆Y   and   X0 − i∆Y  for  ∆Z = i∆Y. 

Imaginary 
δY/X0 

Real 
δX/X0 

Total 
|δZ/X0|QU 

δX/X0 = ε 
≈ 2.22×10−16 

∆Y/X0 = √2ε 
≈ 2.11×10−8 

 |δY/X0| = ∆Y/X0  

|δY/X0| =
ε

∆Y/X0
 

δX/X0 = √2ε 
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δX X0⁄ = �
−CδX

QδX
= �

(∆Y/X0)2ε2

|(∆Y/X0)2 − 2ε| =
(∆Y/X0)ε

�|(∆Y/X0)2 − 2ε|
   for  ∆Y/X0 > √2ε         (99)  

 
Equation (99) simplifies even further when there is an order of magnitude separation 
between (∆Y/X0)2 and 2ε.  If (∆Y/X0)2 >> 2ε, then [(∆Y/X0)2 − 2ε]  →  (∆Y/X0)2. 

δX X0⁄    ≈    ε    ≈   2.22×10−16   for ∆Y/X0 > 3.2×√2ε                  (100) 

The values of δX/X0 in Equations (98) and (100) are clearly evident as the two horizontal 
dashed blue lines for [δX/X0]QU in Figure 16 to the left and to the right of 
∆Y/X0 = √2ε ≈ 2.11×10−8. 
 
These results for δX/X0 produce corresponding formulas for δY/X0 via Equation (96).  For 
the condition ∆Y/X0 < √2ε, substitute Equation (98) into (96). 

�
δY
X0
�
2

+  2
∆Y
X0

δY
X0

+ �
∆Y
X0
�
2

= �
δY
X0

+
∆Y
X0
�
2

= 0    ⇒ 

�
δY
X0
� = −

δY
X0

=
∆Y
X0

        for   ∆Y/X0 < √2ε.  

This result is shown as the diagonal, increasing yellow dashed line for |δY/X0|QU in 
Figure 16. 
 
For the condition ∆Y/X0 > 3.2×√2ε, substitute Equation (100) into (96). 

�
δY
X0
�
2

+  2
∆Y
X0

δY
X0

+ 2ε − ε2 = 0        for  
∆Y
X0

> 3.2×√2ε .                        (101) 

The small value of ε allows the constant coefficient CδY = 2ε −  ε2 = (2−ε)ε to simplify to 2ε, 
so the equation’s determinate becomes DδY = 4[(∆Y/X0)2 − 2ε].  The determinate simplifies 
to DδY ≈ BδY

2  = 4(∆Y/X0)2 because of the condition ∆Y/X0 > 3.2×√2ε.  The corresponding Q 
value becomes 

 QδY = 1
2
�|BδY| + �|DδY|� ≈ 1

2
(|BδY| + |BδY|) = |BδY| = 2(∆Y/X0).                        

The value BδY = 2(∆Y/X0) is positive, so the Figure 8 quadratic-equation algorithm gives 
the desired greater solution of (101) as δY/X0 = −CδY/QδY = −2ε/[2(∆Y/X0)]: 

  �
δY
X0
� = −

δY
X0

=
ε

∆Y/X0
       for  ∆Y/X0 > 3.2×√2ε.                                   (102) 

This result is shown as the diagonal decreasing yellow dashed line for |δY/X0| in Figure 16, 
which is similar to that for |δZ/X0|QU in Equation (89) when ∆Z = ∆X is real and 
√2ε << ∆X/X0 <<  1. 
 
Equations (100) for δX/X0 and (102) for |δY/X0| show that  

|δX/X0| = |δY/X0| = ε       for      ∆Y/X0  =  1 
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Figure 17 below compares the relative quantum uncertainties from Figures 15 (real 
∆Z = ∆X) and 16 (imaginary ∆Z = i∆Y).  These are the light blue and yellow curves 
respectively in Figure 17.  Recall that these values apply to the quadratic equation 
P(Z1+δZ) = +δP, Equation (85) using +δP on the right side.  The Figure 17 dashed black 
curve and red curve show the relative quantum uncertainties using −δP on the right side of 
Equation (85):  P(Z1+δZ) = −δP.  The formulas for these latter two curves are derived 
below. 
 
Figure 17   Quantum Uncertainty for Quadratic-Equation Multiplicity Near Miss  --  

Comparison of Four Calculations 

 
Using P(Z1+δZ) = −δP instead of P(Z1+δZ) = +δP, the constant coefficient in Equation (86) 
changes sign. 

�
δZ
X0
�
2

+ 2 
∆Z
X0

 
δZ
X0

+ 2 �1 +
∆Z
X0
� ε = 0     for     P(Z1 + δZ) = −δP          (103) 

 
The case of real ∆Z = ∆X produces the determinate of this quadratic equation as  

D = 4[(∆X X0⁄ )2 − 2(1 + ∆X X0⁄ )ε]. 

Multiplicity Imaginary Relative Miss ∆Y/X0 

Relative 
Quantum 

Unertainty 

�
δZ
X0
�
QU

 

Multiplicity Relative Miss ∆X/X0 or ∆Y/X0 

Solutions of quadratic equation P(Zn) = 0  are  Z1 = X0 + ∆Z   and  Z2 = X0 − ∆Z 
where real ∆Z = ∆X  or  imaginary ∆Z = i∆Y.  Uncertainty δZ satisfies 

P(Z1 + δZ) = ±δP    where   δP = PE ε = 2|X0(X0+∆Z)| ε. 

P(Z1+δZ) = +δP, real ∆Z 

P(Z1+δZ) = +δP, imag ∆Z 

P(Z1+δZ) =  −δP, real ∆Z 

P(Z1+δZ) =  −δP, imag ∆Z 
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The determinate is negative for ∆X/X0 less than about √2ε.  The pertinate solution of 
Equation (103) is then 

δZ X0⁄ = −∆X X0⁄ + i√−D/2,      ∆X X0⁄ < √2ε  
whose absolute value is 

|δZ X0⁄ |QU = �(∆X X0⁄ )2 + 2(1 + ∆X X0⁄ )ε − (∆X X0⁄ )2 = �2(1 + ∆X X0⁄ )ε  ≈  √2ε  

|δZ X0⁄ |QU  ≈  √2ε       for     ∆X X0⁄ < √2ε   and   P(Z1 + δZ) = −δP. 

This is the same value plotted in Figure 15 for ∆X/X0 < √2ε. 
 
For ∆X/X0 > √2ε, the determinate D is positive.  The solution of Equation (103) is that given 
by Equation (87) with a sign change for terms that contain ε.  

�
δZ
X0
�
QU

= �
−2(1 + ∆X/X0)ε

|∆X/X0| + �(∆X/X0)2 − 2(1 + ∆X/X0)ε
 �          for ∆Z = ∆X > X0 √2ε  and

P(Z1 + δZ) = −δP.
      

This value of |δZ/X0|QU versus ∆X/X0 is plotted as the dashed black curve in Figure 17. 
 
Finally, we solve Equation (103) for the case of imaginary ∆Z: ∆Z = i∆Y.  Just as Equation 
(86) leads to Equations (95) and (96) for (δX/X0)2 and δY/X0, so Equation (103) produces 
the following. 

��
δX
X0
�
2

�
2

+ BδX  �
δX
X0
�
2

+ CδX = 0   where   BδX = �
∆Y
X0
�
2

+ 2ε,     CδX = − �
∆Y
X0
�
2

ε2          (104) 

�
δY
X0
�
2

+ BδY �
δY
X0
� + CδY = 0    where   BδY = 2 �

∆Y
X0
� ,    CδY = −2ε − �

δX
X0
�
2

          (105) 

The only difference between these and Equations (95) and (96) is that the sign of 2ε is 
reversed in the formulas for BδX and CδY. 
 
The values of both CδX and CδY are negative, so Equations (104) and (105) each have two 
solutions of opposite sign.  The positive solutions are the ones of interest.  Quantity 
(δX/X0)2 in Equation (104) must be positive, so it is calculated as the positive solution.  The 
maximum value of (δX/X0)2 is ε2, so CδY ≈ −2ε.  The value of δY/X0 in Equation (105) must 
then have an absolute value several orders of magnitude less than 1.  The negative solution 
of Equation (105) grows to −2 at ∆Y/X0 = 1 and, therefore, cannot be δY/X0.  The positive 
solution is δY/X0. 
 
From (δX/X0)2 and δY/X0 as the positive solutions of Equations (104) and (105), relative 
quantum uncertainty is calculated as 

|δZ X0⁄ |QU = �(δX X0⁄ )2 + (δY X0⁄ )2  

and plotted as the red curve in Figure 17. 
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Quadratic Equation Zero-Guard Range 
In the multiplicity near-miss condition where Z1 = X0 + ∆Z,  Z2 = X0 − ∆Z, and |∆Z| < X0, 
there is a range of small ∆Z values for which the determinate D = B2 − 4C fails to exceed its 
quantum error value DE ε in the Figure 8 final quadratic-equation algorithm.  Zero-guard 
processing resets D to zero in these cases, and calculates Z1 = Z2 = −B/2.  The maximum 
absolute value |∆Z| of such ∆Z values is called the zero-guard range |∆Z|ZG. 
 
Calculation of |∆Z|ZG for the near-miss condition is straight-forward.  Equation (83) gives 
the coefficients as B = −2X0 and C = X02 − ∆Z2  > 0, so the determinate is 

D = B2 − 4C = 4∆Z2. 
Equation (33) gives DE as 

DE = 2|B| BE + 4CE = 2|B|2 + 4|C| = 2B2 + 4C = 12X02 − 4∆Z2  

The zero-guard range is found by equating D = 4∆Z2 to DEε and solving for ∆Z. 

D = 4∆Z2 = (12X02 − 4∆Z2)ε           ⇒           ∆Z2  =  3X02 ε/(1 − ε)  ≈  3X02 ε 

The relative zero-guard range |∆Z/X0|ZG becomes 

|∆Z/X0|ZG  ≈  √3ε   ≈  2.58×10−8, 

a value only 22% greater than the relative quantum uncertainty of √2ε  ≈  2.11×10−8. 
 
Figure 18 below shows the relative zero-guard range in relation to the Figure 15 quantum 
uncertainty for real near miss (∆Z = ∆X) and the Figure 16 total quantum uncertainty for 
imaginary near miss (∆Z = i∆Y).  The zero-guard range is shown as the vertical dashed red 
line at the relative miss value of √3ε on the horizontal axis.  For all relative miss values 
|∆Z/X0| to the left, i.e. for |∆Z/X0| <  √3ε, the zero-guard processing causes the calculated 
quadratic-equation solutions to be Z1C = Z2C = −B/2 = X0.  Zero-guard processing does not 
affect the calculated solutions for |∆Z/X0| ≥  √3ε. 
 
The diagonal red line plots the theoretical zero-guard relative error |δZ/X0|ZG , which is the 
absolute value of the calculated solution Z1C minus the true solution Z1, all normalized by 
X0: |δZ/X0|ZG  = |[X0 − (X0 + ∆Z)]/X0| = |∆Z/X0|. 

|δZ/X0|ZG = |∆Z/X0|        for      |∆Z/X0| < √3ε 
 
In actual practice, the effective solution error produced by zero-guard processing is less 
dramatic than appears in Figure 18. 
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Figure 18   Comparison of Quadratic-Equation Zero-Guard Range to Quantum Uncertainty 

 
Figure 19 on page 87 compares the relative zero-guard range to computer trial results for 
the real relative near miss ∆X/X0 at X0 = 1.2.    The larger blue dots plot error results when 
zero-guard processing is disabled; the smaller red dots show error with zero-guard 
processing enabled.  These results are typical for calculated solutions of stand-alone 
quadratic equations.  The zero-guard processing affects the error results only for a small 
range of relative miss values just less than the zero-guard cut-off.  In this example, zero-
guard processing affects the error results only over the range 
7×10−9 < ∆X/X0 < √3ε  ≈  2.58×10−8. 
 
The normal Numerical Recipes algorithm of Figure 4 accurately calculates quadratic-
equation solutions for the multiplicity condition (∆X/X0 = 0).  I am unable to find any 
quadratic-equation example where this is not so.  As ∆X/X0 increases from zero, the 
Figure 4 algorithm continues to calculate the multiplicity result Z1C = Z2C = X0 until ∆X/X0 is 
great enough that the computer can store the constant coefficient C = X02− ∆Z2 = 
X02 (1 − ∆Z2/X02) as something other than X02.  Until that point, the theoretical zero-guard 
error is meaningless because the calculated solutions are Z1C = Z2C = X0, whether or not 
zero-guard processing is enabled. 
 

Relative 
Error 

|δZ/X0| 

Multiplicity Relative Miss |∆Z/X0| 

Quadratic Equation Solutions Are   X0 + ∆Z   And   X0 − ∆Z. 

Relative Zero-Guard Range 

|∆Z/X0| ZG = √3ε ≈ 2.58×10
−8

 

Quadratic-Equation 
Calculated Solutions 
Are Z1 = Z2 = X0 

Max 
[δZ/X0]QU = √2ε 
≈ 2.11×10−8 

Max Zero-Guard 
Relative Error 

δZ/X0 ≈ √3ε 

≈ 2.58×10−8 

Q.U. for Real Near Miss 
Total Q.U. for Imaginary Near Miss 
Theoretical Zero-Guard Error 
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Figure 19   Effect of ZG Processing on Quadratic-Equation Trial Solution Error for Multiplicity 
Real Near Miss  

 
Only when computed results differ between zero-guard processing enabled and disabled 
can we say that zero-guard processing produces an effective error, as shown in Figure 20, 
an expanded view of Figure 19.  Even this effective zero-guard error is not a practical 
concern.  At the zero-guard range, we have ∆X/X0 = (∆X/X0)ZG = √3ε .  The coefficients B 
and C are 

B = −(Z1 + Z2) = −(X0+∆X + X0−∆X) = −2X0 

C = Z1Z2 = (X0+∆X)(X0−∆X) = X02(1 − ∆X2/X02) = X02(1 − 3ε) 

The calculated solutions are Z1C = Z2C = X0, so the check coefficients are 

BC = −(Z1C + Z2C) = −(X0+X0) = −2X0  =  B 

CC = Z1C Z2C  =  X02 

The relative coefficient errors are 

δBu ≡ �
BC − B

B
� = 0     and        δCu ≡ �

CC − C
C

� = �
3ε

1 − 3ε
�  ≈  3ε  ≈   6.66×10−16.                  
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Figure 20   Effect of ZG Processing on Quadratic-Equation Trial Solution Error for Multiplicity 
Real Near Miss  --  Expanded View 

 
Thus, the user would have to supply coefficient relative accuracy to better than 15 decimal 
places in order to write a quadratic equation with nonzero, near-miss relative 
displacement ∆X/X0 equal to (∆X/X0)ZG = √3ε or less. 
 
For the example case of Figures 19 and 20 with X0 = 1.2, the value of C at ∆X/X0 = 0 is 1.44.  
At ∆X/X0 = (∆X/X0)ZG = √3ε , the C value is 1.43999999999999904.  The final 9 appears in 
the fifteenth decimal place.  This C value is so close to 1.44 that it is displayed as 1.44 in the 
Excel spreadsheet, even though the internal spreadsheet value is less than 1.44. 
 
We conclude that zero-guard processing in the quadratic-equation algorithm is superfluous 
for solving stand-alone quadratic equations.  The normal Numerical Recipes algorithm of 
Figure 4 accurately calculates quadratic-equation solutions for the multiplicity condition 
without engaging zero-guard processing.  On the other hand, any theoretical error induced 
by the zero-guard processing is not a practical concern. 
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Error 
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Quantum Uncertainty 
Trial without ZG Processing 
Trial with ZG Processing 

Multiplicity Relative Miss ∆X/X0 

Quadratic Equation Solutions Are   X0 + ∆X   And   X0 − ∆X. 
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Necessity of Zero-Guard Processing in the Quadratic-Equation Algorithm 
Zero-guard processing in the quadratic-equation algorithm of Figure 8 is necessary to 
produce accurate solutions for some cubic- and quartic-equations that require post-
processing.  Two such equations are: 

zn3 − 5.20000001 zn2 + 5.2000000025×10−8 zn− 1.3×10−16 = 0  with true solutions 5.2, 
5×10−8, and 5×10−8 
 
Zn4  −12.20000001 Zn3 − 36.400000122 Zn2  − 3.64000000305×10−7  Zn+ 9.1×10−16 = 0  with 
true solutions 7, 5.2, 5×10−8, and 5×10−8 
 
Post processing for these two equations engages the Figure 8 quadratic-equation 
algorithm, which resets its initial non-zero D value to zero and thereby calculates the 
double solution X1 = X2 = 5×10−8 with Y = 0.  Relative solution error is less than 
ε ≈ 2.22×10−16. 
 
If we turn off the quadratic algorithm’s zero-guard processing (if we use the Figure 4 
algorithm instead of Figure 8), then the two calculated solutions differ from each other, and 
relative solution error is on the order of 10−8 instead of 10−16. 
 
Coefficient Minimum Required Relative Accuracy 
Figure 19 above demonstrates one final point:  the dashed green line plots the coefficient 
minimum required relative accuracy on the right vertical axis as a function of ∆X/X0.  For 
any displacement ∆Z from the multiplicity solution X0, the constant coefficient is 

C = X02 − ∆Z2 = X02[1 − (∆Z/X0)2] 

C = X02[1 − (∆X/X0)2]  if ∆Z = ∆X           OR           C = X02[1 + (∆Y/X0)2]  if ∆Z = i∆Y 

For the multiplicity near-miss condition where |∆Z/X0| is small, the user must supply the C 
value with sufficient accuracy to distinguish it from C = X02, or equivalently, to distinguish 
the factor [1 − (∆Z/X0)2] from 1.  Suppose for example, ∆Z/X0 =∆X/X0 = 1×10−4.  Then 
[1 − (∆X/X0)2] = [1 − 1×10−8] =  0.99999999.  The minimum required relative accuracy is 
eight decimal places.  The number N of decimal places, plotted as the dashed green in line 
in Figure 19, is calculated as 

N = −2log10(|∆Z/X0|). 

If the constant coefficient has a relative accuracy limited to eight decimal places, then the 
smallest, nonzero near-miss relative displacement that the quadratic-equation can 
represent is ∆Z/X0 = 1×10−4. 
 
This concludes error analysis for quadratic equations, and we proceed with cubic 
equations. 
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IX. CUBIC EQUATION ANALYSIS – MULTIPLICITY 3, ITS NEAR MISS, AND MULTIPLICITY 2 

This section and the next demonstrate how zero-guard processing and post processing 
work together to produce good solution accuracy for the multiplicity conditions.  Section X 
addresses multiplicity 2 near miss. 
 
This section addresses multiplicity 3, its near miss, and multiplicity 2.  The analysis is based 
on a cubic polynomial p(z) with two equal real roots x0 and the third real root xA.  Neither 
x0 nor xA is zero; otherwise, the Special Case 1, a0 = 0 applies.  For multiplicity 3 where 
xA = x0, we show that the relative quantum uncertainty |δz/z0|QU is (3ε)1/3 ≈ 8.73×10−6.  The 
maximum relative solution error imposed by zero-guard processing is 15% greater at 
1×10−5, but the corresponding relative coefficient errors (Equation (82)) are small at 
δa2u = δa1u = 0, and δa0u = 2×10−15. 
 
The cubic polynomial is 

 p(z) = z3 + a2 z2 + a1 z + a0  =  (z − x0)2 (z − xA) (106) 
where 
 a2 = −(xA + 2x0),        a1 = 2xAx0 + x02,        a0 = −xA x02,      x0 ≠ 0,    xA ≠ 0. (107) 

Therefore: 
 p(z) = 0         for         z = x0   or   z = xA. (108) 
 
The cubic polynomial’s inherent symmetry allows us to take xA ≥ x0 without sacrificing 
generality.  To demonstrate, let p2(z) have two equal roots x02 and the third real root xA2 
where xA2 < x02.  Then p2(z) = (z − x02)2 (z − xA2).  Define x0 = −x02 and xA = −xA2.  Then 
xA2 < x02 ⇒ xA > x0 and 

p2(z) = (z + x0)2 (z + xA)   =  z3 + (2x0 + xA) z2 + (2x0xA + x02) z + xA x02 

 = z3 − a2 z2 + a1 z − a0 = −p(−z). 

The properties of p2(z) are the properties of p(z) with all of the signs reversed.  The roots 
and root errors of p2(z) are the negatives of the roots and root errors of p(z).  The error δp2 
in function p2(z) is the negative of error δp in p(z).  That is: |δp2| = |δp|.  We therefore adopt 

 xA  ≥  x0   by convention. (109) 
 
With xA > x0, the double root x0 occurs at a local maximum of p(z), and the derivative p′(z) 
at z = xA is positive. 
 
In addition to taking xA ≥ x0, normalization by x0 simplifies the analysis even further.   

Define the following.          u ≡ z/x0           η ≡ xA/x0           pu(u) ≡ p(z)/x03 (110) 

Then 
 pu(u) = u3 + a2u u2 + a1u u + a0u  (111) 
where 
 a2u ≡ a2/x0 = −(η + 2)               a1u ≡ a1/x02  = 2η + 1                    a0u ≡ a0/x03 = −η. (112) 
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The cubic pu(u) has roots 1, 1, and η. 

 pu(u) = (u − 1)2 (u− η) (113) 

 pu(u) = 0       for      u = 1    and     u = η. (114) 
 
When x0 is positive, then u and z have the same sign, and η ≥ 1.  If xA ≠ x0, then the double 
root u = 1 occurs at a local maximum of pu(u), and the simple root u = η is greater than 1. 

When x0 is negative, then u and z have opposite signs, and η ≤  1.  If xA ≠ x0, then the double 
root u = 1 occurs at a local minimum of pu(u), and the simple root u = η is less than 1. 

Whatever the sign of x0, the derivative pu′(u) at the simple root u = η  is positive. 
 
Setting xA = x0 ⇔ η = 1 produces the multiplicity 3 condition in p(z) and pu(u).  The 
coefficients in (111) and (112) become  

a2u = −3          a1u = 3         a0 = −1        for       η = 1. 
 
Quantum Uncertainty 
We can now calculate the quantum uncertainty |δu|QU = |δz/x0|QU of the multiplicity 3 root 
u = 1.  The cubic pu(1) is evaluated as the sum 

pu(1) = 13 − 3(12) + 3(1) − 1 = 1 − 3 + 3 − 1 = 0. 

The magnitude of the sum’s least significant bit is that of its greatest-magnitude term.  The 
second and third terms both have the greatest magnitude of 3; therefore, the magnitude of 
pu(1)’s least significant bit is δpu = 3ε.  This δpu is the magnitude of the range of pu values 
that would be stored in the computer as pu = 0.  To find the resulting uncertainty |δu|QU in 
the root u = 1, solve pu(1 + δu) = ±δpu for δu.  Use Equation (113) with η = 1. 

 pu(1 + δu) = (1 + δu − 1)3  = δu3 = ±δpu = ±3ε         ⇒          |δu| = (3ε)1/3 

 
The relative quantum uncertainty of solution x0 of a multiplicity-three cubic equation is  

|δz/x0|QU  =  |δu|QU  =  (3ε)1/3  ≈  8.73×10−6   (multiplicity 3 quantum uncertainty). (115) 
 
We study multiplicity 3 near miss and multiplicity 2 by incrementally increasing the xA 
value above x0.  The corresponding η = xA/x0 increases above 1 if x0 > 1 or decreases below 
1 if x0 < 0.  For either sign of x0, the magnitude change in η from 1 is |η − 1|.  The cubic pu(u) 
now has two different quantum uncertainty values of interest: one at the double root u = 1 
and one at the simple root u = η. 
 
Start with the quantum uncertainty at the double root u = 1.  From Equation (111), the 
cubic pu(1) is evaluated as the sum  

 pu(1) = 13 + a2u (12) + a1u (1) + a0u   =   1 + a2u + a1u + a0u   =   0 

The magnitude of the polynomial’s least significant bit is that of its greatest-magnitude 
term.  The magnitude of the greatest-magnitude term is MAX(1, |a2u|, |a1u|, |a0u|).  Applying 
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the coefficient values from Equation (112), the magnitude of the polynomial’s least 
significant bit is therefore 

 δpu = MAX(1, |a2u|, |a1u|, |a0u|) ε  =   MAX(1, |η+2|, |2η+1|, |η|) ε . (116) 
 
Use Equation (113) to find the quantum uncertainty |δz/x0|QU.  Set pu(1 + δu) equal to ±δpu, 
and solve for δu. 

 pu(1 + δu) = δu2 (1 + δu − η) = ±δpu 

The desired δu is a solution of the cubic equation 

 δu3 + (1 − η)δu2 − (±δpu) = 0   where   δpu = MAX(1, |η+2|, |2η+1|, |η|) ε. (117) 
CUBIC EQUATION FOR RELATIVE QUANTUM UNCERTAINTY |δu|QU = |δz/x0|QU OF DOUBLE ROOT x0 (u=1) 

Selection of this equation’s appropriate solution is described shortly. 
 
For now, consider the quantum uncertainty at the simple root u = η.  From (111), the cubic 
pu(η) is evaluated as the sum  

 pu(η) = η3 + a2u η2 + a1u η + a0u  =   0 

The magnitude of the polynomial’s least significant bit is that of its greatest-magnitude 
term.  The magnitude of the greatest-magnitude term is MAX(|η3|, |a2uη2|, |a1uη|, |a0u|), and 
the magnitude of the polynomial’s least significant bit is therefore 

 δpu = MAX(|η3|,  |η+2|η2,  |(2η+1)η|,  |η|)ε. 
 
Use Equation (113) to find |δu| = |δz/x0|.  Set pu(η + δu) equal to ±δpu, and solve for δu. 

 pu(η + δu) = (η − 1 + δu)2 δu = ±δpu 

The desired δu is a solution of the cubic equation  

 δu3 + 2(η−1)δu2 + (η−1)2 δu − (±δpu) = 0 (118) 

 where δpu = MAX(|η3|, |η+2|η2, |(2η+1)η|, |η|)ε. 
CUBIC EQUATION FOR RELATIVE QUANTUM UNCERTAINTY |δz/xA|QU = |δu/η| OF SIMPLE ROOT xA (u=η) 

The relative quantum uncertainty |δz/xA|QU for xA is normalized by xA, but u is defined as 
u ≡ z/x0.  We therefore divide δu by η ≡ xA/x0 to obtain |δz/xA|QU:  
|δz/xA|QU = |δz/x0|/|xA/x0| = |δu/η|. 
 
Each of the Equations (117) and (118) has three solutions from which to choose for δu.  
The proper choice of solution for each equation depends on the range of x0 and on the sign 
of the function error ±δpu.  Table IX summarizes the proper solutions as discussed below.  
Following that discussion, Figure 21 plots the resulting quantum uncertainties  |δz/x0|QU 
and |δz/xA|QU as functions of |η − 1| = |(xA − x0)/ x0|. 
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Table IX.   Selecting from Among Equation (117) and (118) Solutions for δu 
Cubic equations (117) and (118) each have three solutions: z1, z2 = x2 + iy2, and z3 = x3 − iy2.  The third 
and fourth columns below show which of these three solutions is the proper value of δu for the condition 
defined in the first two columns.  The relative quantum uncertainties |δz/x0|QU and |δz/xA|QU follow 
directly from δu. 

Range of 
Double 
Root x0 

Sign of 
Function 

Error  ±δpu 

Double Root 
z = x0   u = 1 

Equation (117) 

Simple Root 
z = xA   u = η 

Equation (118) 

x0 > 0 +δpu δu = z2 = x2 + iy2 δu = z1  > 0 

x0 > 0 −δpu δu = z1  < 0 if y2 ≠ 0 
δu = z3 = x3 < 0 if y2 = 0 

δu = z2 = x2 + iy2  if y2 ≠ 0 
δu = z1 < 0 if y2 = 0 

x0 < 0 +δpu δu = z1  > 0 δu = z2 = x2 + iy2  if y2 ≠ 0 
δu = z1 > 0 if y2 = 0 

x0 < 0 −δpu δu = z2 = x2 + iy2 δu = z1  < 0 if y2 ≠ 0 
δu = z3 = x3 < 0 if y2 = 0 

Quantum Uncertainty = |δz/x0|QU = |δu| |δz/xA|QU = |δu/η| 

 
Whether the double root u = 1 of pu(u) occurs at a local maximum or local minimum of 
pu(u) depends on the sign of x0.  The double root x0 of p(z) always occurs at a local 
maximum of p(z) because the simple root xA is greater than or equal to x0.  If x0 > 0, then 
u = z/x0 has the same sign as z, and like double root z = x0 of p(z), the double root u = 1 of 
pu(u) occurs at a local maximum.  A positive function error +δpu implies that δu at the 
u = 1 local maximum cannot be real.  The proper solution of (117) for δu at the double root 
is the complex solution δu = z2 = x2 + iy2.  Thus, the double-root quantum uncertainty is 
|δz/x0|QU = |δu| = �x22 + y22.   A negative function error −δpu implies, however, that δu at 
u = 1 is the only negative real solution of (117).  This is either solution z1 at small η − 1 
when (117) has only one real solution or solution z3 = x3 when all three solutions are real. 
 
If x0 < 0, then u has the opposite sign of z, and the double root u = 1 of pu(u) occurs at a 
local minimum.  Also, η ≤ 1.  A positive function error +δpu implies that δu is (117)’s only 
positive real solution z1.  A negative function error −δpu implies that δu at u = 1 is the 
complex solution δu = z2 = x2 + iy2. 
 
Regardless of the x0 value, the double-root quantum uncertainty is always given by 
|δz/x0|QU = |δu|. 
 
At the simple root u = η,  the cubic pu(u) has a positive derivative pu′(u) provided that 
xA ≠ x0 (η ≠ 1).  Typically, the proper solution of Equation (118) for δu is the real solution of 
least magnitude that has the same sign as ±δpu.  An exception to this rule occurs as follows. 
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The cubic pu(u) has two local extrema where pu′(u) = 0.  They occur at u = 1 and at 
u = (2η + 1)/3.  The extremum value of pu(u) at u = (2η + 1)/3 is pext = −(4/27)(η − 1)3, a 
value opposite in sign to both η − 1 and x0.  If the sign of ±δpu is the same as that of pext, and 
if |η − 1| is so small that |pext| is less than |±δpu|, then δu cannot be real and must be 
complex.  Consequently, the proper solution of Equation (118) is δu = x2 + iy2 when the 
sign of ±δpu is opposite that of x0 and 

|pext| = |(4/27)(η − 1)3|  <   |±δpu|     ⇒      |η − 1| < (27|±δpu|/4)1/3. 

Greater values of |η − 1| produce an Equation (118) with three real solutions. 
 
Figure 21 below plots the relative quantum uncertainties |δz/x0|QU and |δz/xA|QU, produced 
from the solutions δu of Equations (117) and (118), as functions of |η − 1| = |(xA − x0)/ x0|.  
Figure 21a plots the uncertainties for the range x0 > 0 and for both +δpu and −δpu.  Figure 
21b plots the same uncertainties except that the range x0 < 0 applies.  Notice that the 
overall characteristics of the |δz/x0|QU and |δz/xA|QU curves in Figure 21b are similar to those 
in Figure 21a.  In both 21a and 21b, the double-root uncertainty |δz/x0|QU for −δpu (dashed 
yellow  curve) is almost identical to that for +δpu (solid black  curve).  This same comment 
applies to the simple-root uncertainty [δz/δxA]QU with an exception in the region of 
|η − 1| = 10−5.  In 21a, [δz/δxA]QU values for −δpu (dashed green curve) are slightly greater 
than for +δpu (solid blue curve).  This order is reversed in 21b. 
 
The limiting values of |δz/x0|QU and |δz/xA|QU at very small and very large values of |η − 1| 
can be found easily from Equations (117) and (118).  In the limit as |η − 1| approaches zero, 
η is 1, δpu is 3ε in both (117) and (118), and the cubic equations in (117) and (118) both 
become δu3 = ±3ε.  This implies that |δu| = (3ε)1/3, and the uncertainties become 

|δz/x0|QU = |δu| = |δu/η| = |δz/xA|QU = (3ε)1/3  ≈  8.73×10−6    for   |η − 1| → 0. 

This value of (3ε)1/3 is noted on the vertical axis on the left side of the plots. 
 
As |η − 1| in (117) increases without limit, δpu becomes 2ηε, and the cubic equation in δu 
becomes −ηδu2 − (±2ηε) = 0  or δu2 = ±2ε.  This implies that the relative quantum 
uncertainty for the double root becomes |δz/x0|QU = |δu| =√2ε ≈ 2.11×10−8.  This is the same 
multiplicity quantum-uncertainty level as that for quadratic equations ([δZ/δX0]QU in 
Equation (88)).  As |η − 1| in (118) increases without limit, δpu becomes |η3|ε, and the cubic 
equation in δu becomes η2 δu − (±|η3|ε) = 0  or  δu = ±|η|ε.  Thus |δu| = |η|ε, and the 
relative quantum uncertainty for the simple root becomes |δz/xA|QU = |δu/η| = 
ε ≈ 2.22×10−16.  These relative uncertainty values of |δz/x0|QU = √2ε for the double root and 
|δz/xA|QU = ε for the simple root are appropriately noted on the right border of the charts in 
Figure 21a and 21b. 
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Figure 21   Cubic-Equation Quantum Uncertainty for Multiplicity 2 
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Calculated Solution Error 
Figure 22 shows example relative solution errors plotted as a function of η − 1 for the 
example double root z2 = x2 = z3 = x3 = x0 = 1.2.  At each η trial value, the third root is z1 
= xA = x0η = 1.2η.  Equation (107) then produces coefficients a2, a1, and a0 for the cubic 
equation p(z) = z3 + a2 z2 + a1 z + a0  =  0 to be solved. 
 
The figure plots solution errors for two different cubic-equation computation methods.  
Figure 22a shows results for solutions calculated using the round-off-error mitigation 
design: the Figure 9 cubic-equation algorithm, the Figure 12 cubic-equation post-
processing algorithm, and the Figure 8 quadratic-equation algorithm.  Figure 22b shows 
results for calculation without mitigation using the Figure 1 algorithm.  For reference, 
Figure 22 also plots the quantum uncertainties |δz/x0|QU and δz/xA|QU from Figure 21a. 
 
The figure’s relative errors for solutions z1, z2, and z3 are calculated as follows: 

|δz1u| ≡ �
δz1
xA
� = �

z1 − xA
xA

� ,     |δz2u| ≡ �
δz2
x0
� = �

z2 − x0
x0

� ,      |δz3u| ≡ �
δz3
x0
� = �

z3 − x0
x0

� .   (119) 

 
The pattern of relative solution errors displayed in Figure 22a is typical for any real x0 
value.  Compared to the errors in 22b, which are calculated without round-off error 
mitigation, the errors in 22a calculated with mitigation are, for the most part, substantially 
less and produce a more regular plot pattern.  This plot pattern for η − 1 < 1 in Figure 22a 
is due entirely to zero-guard processing in the Figure 9 cubic-equation algorithm as now 
explained. 
 
The far-left portion of Figure 22a is labeled Special Case 2.  In this region where, 
η − 1 < 1.3×10−7, the η − 1 value is so small (η is so close to 1, x0 is so close to xA) that zero-
guard processing resets q, r, and R to zero.  With q = r = 0, the algorithm branches to 
Special Case 2, and calculates the three cubic-equation solutions as the same real value:    

z1 = x2 = x3 = −a2/3 = (xA + 2x0)/3   instead of the true values   z1 = xA,  x2 = x3 = x0. 

In normalized form the calculated solutions are 
z1
xA

=
1

3η
(η + 2)  instead of 1,        

x2
x0

=  
x3
x0

=   
1
3

(η + 2)  instead of 1.  

The relative errors become 

|δz1u|   =  |(η + 2)/(3η) − 1|  =  | −2(η−1)/(3η)| ≈  2(η−1)/3    for small η −1,  and 

|δz2u|  =  |δz3u| =  |(η + 2)/3 − 1| =    (η−1)/3. 

All three are proportional to η−1.  The z2 and z3 relative errors equal each other; the z1 
relative error is twice their value. 
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Figure 22   Example Cubic-Equation Relative Solution Error – Multiplicity 2 
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The next portion of Figure 22a is labeled Special Case 4 and includes η − 1 values from 
1.3×10−7 to 3×10−5.  Here, the calculated value of q is negative (as it should be), but r is still 
reset to zero, and Special Case 4 applies.  The Figure 9 algorithm calculates the cubic-
equation solutions as three evenly-distributed real values:    

z1 = −a2/3 + s,     x2 =  −a2/3,      x3 = −a2/3 − s    where    s = �|3q|     and    a2 = −(xA + 2x0). 

Equations (5) and (107) show that q is 
 q = −(xA − x0)2/9,       which implies that        s = √3 (xA − x0)/3. 

The calculated solutions are 

z1 =
1
3
�xA + 2x0 + √3(xA − x0)�    instead of    xA 

x2 =
1
3

[xA + 2x0]    instead of    x0 

x3 =
1
3
�xA + 2x0 − √3(xA − x0)�    instead of    x0 

with y2 = 0.  The relative errors become 

|δz1u| = �
1

3η
�η + 2 + √3(η − 1)� − 1� =   

2 − √3
3η

(η − 1)  ≈  0.089 (η − 1) 

|δz2u| = �
1
3

[η + 2] − 1�                                         =
1
3

(η − 1)  ≈  0.333 (η− 1) 

|δz3u| = �
1
3
�η + 2 − √3(η − 1)� − 1�     =

√3 − 1
3

(η − 1) ≈  0.244 (η− 1). 

Again, all three relative solution errors are proportional to η − 1.  In the expression above 
for |δz1u|, the fraction (2 − √3)/(3η) is approximately equal to (2 − √3)/3 because η − 1 is 
less than 10−4, so η is very close to 1. 
 
The maximum relative solution error occurs at η − 1 = 3×10−5, the right edge of the Special 
Case 4 region in Figure 22a.  This maximum error value is |δz2u| ≈ 1×10−5, only 15% greater 
than the multiplicity 3 quantum uncertainty of (3ε)1/3  ≈  8.73×10−6. 
 
More importantly, the solutions calculated with the mitigation design are very accurate 
when judged against the cubic-equation coefficients.  The coefficients a2 and a1 generated 
from the calculated solutions using Equations (2) or (3) are identical to the algorithm input 
coefficients a2 and a1.  The coefficient a0 generated from the calculated solutions using 
Equations (2) or (3) reproduces the algorithm input a0 accurate to 15 significant figures. 
 
To demonstrate these facts, normalize by x0 the formulas above for the calculated solutions 
z1, x2, and x3: 
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 z1u ≡ z1/x0 = [η + 2 + √3(η − 1)]/3 

 x2u ≡ x2/x0 = (η + 2)/3 

 x3u ≡ x3/x0 = [η + 2 − √3(η − 1)]/3 

where y2u = 0.  Use Equation (3) to calculate the corresponding cubic-equation coefficients: 

 a2u = −(η + 2)               a1u = 2η + 1                    a0u = −η + 2
27

(η − 1)3. 

The results for a2u and a1u are the same as the normalized input coefficient values in 
Equation (112).  The a0u value differs from the one in Equation (112) by 2

27
(η − 1)3.  This 

difference, evaluated at η − 1 = 3×10−5 (the η − 1 corresponding to maximum solution 
error) is 2×10−15.  Thus, the calculated cubic-equation solutions reproduce the input 
coefficients a2 and a1 exactly and a0 accurate to nearly 15 significant figures. 
 
Relative solution error in Figure 22a instantly drops six orders of magnitude at 
η − 1 = 3×10−5.  This sudden decrease occurs because q and r now have sufficient 
magnitude that zero-guard processing maintains their original calculated values.  The 
processing correctly resets any non-zero calculated R to zero (Special Case 3), so calculated 
solutions reflect the multiplicity 2 condition.  Relative solution error continues to drop to 
10−16 or less as η − 1 increases to about 10.  As noted at the bottom of the figure, any 
relative solution error less than 10−16 is plotted as 10−16. 
 
The mitigation design invokes post processing to recalculate the two near-miss solutions z2 
and z3 for η − 1 greater than about 1.9.  The recalculation maintains the very small relative 
solution errors near 10−16 as η − 1 grows large.  The onset of recalculation near η − 1 = 1.9 
corresponds to the value of ζ = 0.345 in Figure 12.  To show this correspondence, recall 
that η ≡ xA/x0 where xA > x0.  The Figure 12 algorithm recalculates the two smaller-
magnitude solutions near x0 approximately when |x0| < ζ|xA|, that is, when |xA/x0| = xA/x0 
= η > 1/ζ .  Since ζ = 0.345, the algorithm recalculates the two smaller solutions when 
η > 1/ζ = 1/0.345 ≈ 2.9, which implies η − 1 > 1.9. 
 
By contrast, solution errors without post processing in Figure 22b grow larger due to 
magnitude-type error magnification as η − 1 increases above about 10. 
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X. CUBIC EQUATION ANALYSIS – MULTIPLICITY 2 NEAR MISS 

This section extends the previous section’s analysis to the multiplicity 2 near miss 
condition, where again the mitigation design provides good solution accuracy.  The three 
cubic-equation solutions are now 

z1 = xA,      z2 = x0 + ∆z      and      z3 = x0 − ∆z     where      xA ≥ x0.  

Quantity ∆z is either a nonnegative real value ∆x or a positive pure imaginary number i∆y.  
Relative quantum uncertainties for the near-miss solutions are calculated as a function of 
η ≡ xA/x0 and ∆z/x0.  The relative zero-guard range |∆z/z0|ZG is a function η, but can change 
dramatically if post processing recalculates the two near-miss solutions when |x0| < |xA|.  
The recalculation occurs approximately when |x0/xA| = |1/η| < ζ where ζ is the Figure 12 
post-processing constant.  With the proper choice of ζ value, post processing not only 
eliminates magnitude-type round-off error magnification, but it also controls the size of the 
zero-guard range and its induced error. 
 
The value ζ = 0.345 is selected to minimize relative coefficient error produced by zero-
guard processing.  With this ζ value, the relative coefficient error induced by zero-guard 
processing is a maximum of 3.3×10−15 for all three coefficients and the maximum ratio 
ZG/QU is 2.3. 
 
Although the title of this section specifies multiplicity 2 near miss, we allow the 
combination |(xA  − x0)/x0| << 1 and |∆z/x0| << 1, which is actually an alternate form of 
multiplicity 3 near miss.  We also allow ∆z = 0 for multiplicity 2. 
 
The cubic polynomial for multiplicity 2 near miss is  

 p(z) = z3 + a2 z2 + a1 z + a0  (120) 

 p(z) = (z − z1)(z − z2)(z − z3) = (z − xA)(z − x0 − ∆z)(z − x0 + ∆z) (121) 

where 

 a2  =  − (z1 + z2 + z3) = − (xA + 2x0) (122) 

 a1  =  z1z2 + z1z3 + z2z3 =    2xAx0 + x02  −  ∆z2 (123) 

 a0  =  −z1z2z3 = −xA (x02 − ∆z2). (124) 
 
 
Quantum Uncertainty for Real ∆z 
This subsection derives quantum uncertainty for real ∆z, but it also plots quantum 
uncertainty and sample calculated solution error for both real and imaginary ∆z. 
 
The case of real ∆z = ∆x ≥ 0 implies that p(z) has three real roots: 

 z1 = xA,           z2 = x2 = x0 + ∆x,         z3 = x3 = x0 − ∆x      for   real ∆z = ∆x. (125) 

The real roots x2 and x3 are separated by the difference 2∆x. 
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The equation p(z) = 0 holds for z equal to any of the three roots: xA, x2, or x3.  We first 
examine z = x3, for which p(x3) is evaluated as the sum 

 p(x3)  =  x33 + a2x32 + a1x3 + a0  =  0. 
 
The magnitude of the sum’s least significant bit is that of its greatest-magnitude term.  The 
least-significant-bit value δp of the sum is therefore 

 δp3 = MAX(|x33|, |a2x32|, |a1x3|, |a0|) ε   >   0. (126) 

This δp3 is the magnitude of the range of p values that would be stored in the computer as 
p = 0. 
 
To find the corresponding uncertainty |δx3|QU in the root z = x3, solve the equation 
p(x3 + δx3) = −δp3 for δx3.  (The rationale for the negative sign in this expression will be 
explained shortly.)  Use Equation (121) for p(z) with z = x3 + δx3 = x0 − ∆x + δx3. 

 (x3 + δx3 − z1)(x3 + δx3 − x2)(δz3) = (x0 − ∆x + δx3 − xA)(−2∆x + δx3) (δx3) = −δp3 

Simplify to arrive at the cubic equation in δx3. 

 δx33 − (xA − x0 + 3∆x)δx32 + 2∆x(xA − x0 + ∆x)δx3 + δp3 = 0 (127) 
 
We choose the negative sign in p(x3 + δx3) = −δp3 to assure that δx3 always has a negative 
real value.  This is so because xA ≥ x0, which implies that p(x0) is a local maximum and that 
the derivative p′(x) is positive for x < x0.  The root x3 = x0 − ∆x < x0, so p′(x3) > 0.  Thus, 
p(x3 + δx3) = −δp3 assures that δx3 < 0 regardless of the magnitudes of ∆x and δp3. 
 
The upper bound of ∆x is (xA − x0)/3.  This value corresponds to the root x2 = x0 + ∆x 
having a value midway between roots x3 = x0 − ∆x and z1 = xA.  That is, x2 − x3 = xA − x2.  We 
cannot use ∆x any greater than (xA − x0)/3, for then x2 would be closer to xA than it is to x3. 
 
Normalize Equation (127) by x33 to obtain a cubic equation in δx3/x3. 

�
δx3
x3
�
3

−
xA − x0 + 3∆x

x0 − ∆x
 �

δx3
x3
�
2

+
2∆x(xA − x0 + ∆x)

(x0 − ∆x)2  �
δx3
x3
� +

δp3
(x0 − ∆x)3 = 0            (128) 

It appears that the coefficients depend on three variables: xA, x0, and ∆x.  Note that δp3 
depends on these same three variables via Equations (126) and (122) to (124) where 
x3 = x0 − ∆x and ∆z = ∆x.  Our normalization, however, allows us to reduce the three 
variables xA, x0, and ∆x to only two.   In the special case x0 = 0, the coefficients depend only 
on xA and ∆x. 

�
δx3
x3
�
3

+
xA + 3∆x

∆x
 �

δx3
x3
�
2

+
2∆x(xA + ∆x)

∆x2
 �

δx3
x3
�−

δp3
∆x3

= 0,       x0 = 0                (129) 

Otherwise, the coefficients of Equation (128) become functions of a sign function and the 
two normalized variables η ≡ xA/x0 and ∆u ≡ ∆x/x0: 
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�
δx3
x3
�
3

−
η − 1 + 3∆u

1 − ∆u
 �

δx3
x3
�
2

+
2∆u(η − 1 + ∆u)

(1 − ∆u)2  �
δx3
x3
� +

 δp3u
(1 − ∆u)3 = 0,    x0≠ 0    (130) 

where 

η ≡ 
xA
x0

,                  ∆u ≡ 
∆x
x0

,                 δp3u ≡ 
δp3
x03

,                                (131) 

δp3u  =  sgn(x0) MAX[|(1−∆u)3|, |(η+2)(1−∆u)2|, |(2η+1−∆u2)(1−∆u)|, |η(1−∆u2)|] ε, (132) 

and 

sgn(x0) = �
1 if x0  >  0
0 if x0 =  0

−1 if x0  <  0
 (not used).                                            (133) 

 
For x0 ≠ 0, the relative quantum uncertainty |δx3/x3|QU for solution x3 is the minimum 
absolute value of the three Equation (130) solutions.  When x0 > 0, |δx3/x3|QU is the absolute 
value of the only negative solution. 

Case: x0 ≠ 0 
Figure 23 below applies Equations (130) through (133) to plot the relative quantum 
uncertainty |δx3/x3|QU versus |∆u| = |∆z/x0| = |∆x/x0| for three representative values of η − 1 
using the heavy, yellow curves.  The uppermost curve corresponds to η − 1 = 1×10−4.  At 
the smallest |∆z/x0| values, x2 and x3 are nearly equal, so that the |δx3/x3|QU value of about 
2×10−6 in Figure 23 corresponds to this same value for the multiplicity 2 quantum 
uncertainty |δz/x0|QU in Figure 21 (black and dashed yellow curves) at η − 1 = 1×10−4. 
 
This same correspondence between Figures 21 and 23 applies to the other two |δx3/x3|QU 
curves in Figure 23.  For the middle curve, η − 1 = 0.00833, and the maximum |δx3/x3|QU is 
about 2.8×10−7.    For the lowest curve, η − 1 = 52.3333, and the maximum |δx3/x3|QU is 
about 2.1×10−8. 
 
The relative quantum uncertainty |δx3/x3|QU in all three curves tends to decrease as the 
relative separation |∆z/x0| increases until the curve terminates.  The upper two curves 
terminate at the point where the root x2 = x0 + ∆x is midway between roots x3 = x0 − ∆x 
and z1 = xA.  That is, where x2 − x3 = xA − x2, which implies ∆x/x0 = (η − 1)/3.  The lowest 
curve terminates at ∆x/x0 = 1 where x3 = 0. 
 
In addition to |δx3/x3|QU, Figure 23 plots the relative quantum uncertainties |δx2/x2|QU 
(dashed, red curve) and |δy2/z2|QU (thin green curve).  Both of these values are nearly equal 
to |δx3/x3|QU.  The value |δx2/x2|QU is the relative quantum uncertainty for root x2 plotted 
versus real ∆z = ∆x.  Notice how the two upper dashed red curves tend to level out at the 
curve termination where root x2 is midway between roots x3 and z1 = xA.  The derivation of 
|δx2/x2|QU is given presently and is similar to that of |δx3/x3|QU.  The value |δy2/z2|QU, whose 
derivation is given later, applies when ∆z = i∆y is imaginary.  See Equations (146) to (148) 
below. 
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Figure 23   Cubic-Equation Quantum Uncertainty for Multiplicity 2 Near Miss 

 
The derivation of |δx2/x2|QU starts by using Equation (121) for p(z) to solve the equation 
p(x2 + δx2) = −δp2 for δx2 where 

 δp2 = MAX(|x23|, |a2x22|, |a1x2|, |a0|) ε   >   0. (134) 

The result is the following cubic equation for δx2.  

 δx23 − (xA − x0 − 3∆x)δx22 − 2∆x(xA − x0 − ∆x)δx2 + δp2 = 0. (135) 

Comparing Equations (134) and (135) to (126) and (127), we see that δp2, x2, and δx2 
replace δp3, x3, and δx3 and that −∆x replaces ∆x. 
 
We choose the negative sign in p(x2 + δx2) = −δp2 to assure that Equation (135) produces a 
proper positive real solution for δx2. The value δp2 in Equation (134) is positive.  Given any 
∆x in the range (0, (xA − x0)/3), both the quadratic term and linear term of Equation (135) 
are negative for positive δx2.  One or both of these terms dominate the cubic term 
depending on the value of ∆x.  Thus Equation (135) has the desired positive real solution 
for δx2. 
 
The cubic equations in δx2/x2 corresponding to Equations (128), (129), and (130) become 

Relative 
Quantum 

Uncertainty 

|∆z/x0| 

 |δx3/x3|QU ∆z = ∆x 
 |δx2/x2|QU ∆z = ∆x 
 |δy2/z2|QU ∆z = i∆y 

η 1.0001 1.00833 53.3333 
η − 1 1×10−4 0.00833 52.3333 

 

x0 > 0,                   η = xA/x0,       η − 1 = (xA − x0)/x0 
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�
δx2
x2
�
3

−
xA − x0 − 3∆x

x0 + ∆x
 �

δx2
x2
�
2

−
2∆x(xA − x0 − ∆x)

(x0 + ∆x)2  �
δx2
x2
� +

δp2
(x0 + ∆x)3 = 0                  (136) 

�
δx2
x2
�
3

−
xA − 3∆x

∆x
 �

δx2
x2
�
2

−
2∆x(xA − ∆x)

∆x2
 �

δx2
x2
� +

δp2
∆x3

= 0,        x0 = 0,   ∆z = ∆x         (137) 

�
δx2
x2
�
3

−
η − 1 − 3∆u

1 + ∆u
 �

δx2
x2
�
2

−
2∆u(η − 1 − ∆u)

(1 + ∆u)2  �
δx2
x2
� +

 δp2u
(1 + ∆u)3 = 0,       x0 ≠  0.     (138) 

The value δp2u corresponds to δp3u in Equation (132): 

δp2u  =  sgn(x0) MAX[|(1+∆u)3|, |(η+2)(1+∆u)2|, |(2η+1−∆u2)(1+∆u)|, |η(1−∆u2)| ] ε. (139) 

The relative quantum uncertainty |δx2/x2|QU for solution x2 at x0 ≠ 0 is the minimum 
absolute value of the three Equation (138) solutions.  It is plotted as the dashed red curve 
versus ∆u = |∆z/x0| in Figure (23) above.  When x0 > 0 and ∆x/x0 ≤ (η − 1)/3, the solution 
of Equation (138) with the minimum absolute value is a positive solution.  This 
corresponds to the positive solution δx2 of Equation (135). 
 
Figures 24, 25, and 26 below plot trial values of solution relative error versus |∆z/x0| for the 
three η − 1 values in Figure 23 using x0 = 1.2.  The xA value for each of the three figures is 
xA = x0η = 1.2η. 

Figure 24 η − 1 = 52.3333 xA = 64 
Figure 25 η − 1 = 0.00833 xA = 1.21 
Figure 26 η − 1 = 1×10−4 xA = 1.20012 

 
Figures 24a, 25a, and 26a show error for solutions calculated with the mitigation design: 
the Figure 9 cubic-equation algorithm, the Figure 12 cubic-equation post-processing 
algorithm, and the Figure 8 quadratic-equation algorithm.  Figures 24b, 25b, and 26b show 
error for solutions calculated without the mitigation design using the Figure 1 algorithm. 
 
For the relative errors |δx3/x3| (yellow squares) and |δx2/x2| (red circles), the separation 
∆z = ∆x is real, and the true x2 and x3 values are x2 = x0 + ∆x and x3 = x0 − ∆x.  The 
horizontal-axis variable is |∆z/x0| = |∆x/x0| = |∆u|. 
 
Figures 24a, 25a, and 26a with the mitigation design also plot relative error |δy2/z2| (green 
circles);  Figures 24b, 25b, and 26b without the mitigation design also plot relative error 
|δz2/z2| (black circles).  The corresponding separation ∆z = i∆y is imaginary, and the true x2 
and x3 values are x2 = x0 + i∆y and x3 = x0 − i∆y.  The horizontal-axis variable is 
|∆z/x0| = |∆y/x0|.  The mitigation design produces solution error with a negligible real 
component, so only the imaginary error component is contained in |δy2/z2| (green circles).  
Without the mitigation design, either the real or imaginary component may dominate the 
solution error, so |δz2/z2| (black circles) includes both components. 



Cubic Equation Analysis – Multiplicity 2 Near Miss 

9/24/2021  Page 105 of 136 

Figure 24   Example Solution Error, Cubic Multiplicity 2 Near Miss for η − 1 = 52.3333 
x0 = 1.2,   xA = 64                 η = xA/x0,       η − 1 = (xA − x0)/x0 

Relative Quantum Uncertainty 
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* Note: Any relative solution error value less than 10−16 is plotted as 10−16. 
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Figure 25   Example Solution Error, Cubic Multiplicity 2 Near Miss for η − 1 = 0.00833 

  

x0 = 1.2,   xA = 1.21               η = xA/x0,       η − 1 = (xA − x0)/x0 
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Figure 26   Example Solution Error, Cubic Multiplicity 2 Near Miss for η − 1 = 1×10−4 

  

x0 = 1.2,   xA = 1.20012             η = xA/x0,       η − 1 = (xA − x0)/x0 
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As a reference, the figures also plot the appropriate relative quantum uncertainties from 
Figure 23. 
 
The pattern of quantum uncertainty and error values in Figure 24a (η − 1 = 52.3333) with 
the mitigation design are typical for any multiplicity 2 near-miss cubic equation with a 
|η − 1| value of 1 or greater, just as the double-root values of |δz/x0|QU in Figure 21 change 
little for |η − 1| of 1 or greater.  It makes little difference whether x0 is positive or negative 
or whether ∆z is real or imaginary, the plots of quantum uncertainty and computed 
solution error with the mitigation design are all similar. 
 
Zero-guard processing assures accurate calculated solutions for the multiplicity 2 condition 
∆z = 0 and z2 = z3 = x0.  As ∆z/x0 increases up to multiplicity the relative zero-guard range 
|∆z/z0|ZG (in this case 3.82×10−8), the calculated z2 and z3 values remain equal to each other.  
The plotted relative error values increase in proportion with ∆z/x0 .  The peak relative 
error becomes the relative zero-guard range |∆z/z0|ZG.  That value in this case is 3.82×10−8, 
about 1.8 times the maximum quantum uncertainty at ∆z = 0.  However, this measure of 
relative error assumes that we have a priori knowledge of the true solutions.  The only true 
values available in actual practice are the cubic-equation coefficients. 
 
To evaluate solution accuracy against the input cubic-equation coefficients a2, a1, and a0, we 
use the calculated solution values z1C, z2C = x2C + iy2C, and z3C = x3C − iy2C and Equations (3) 
to calculate the check coefficients a2C, a1C, and a0C.  Solution accuracy can then be judged 
from the relative coefficient errors defined in Equation (82) and repeated here. 

δa2u ≡ �
a2C − a2

a2
� ,      δa1u ≡ �

a1C − a1
a1

� ,      δa0u ≡ �
a0C − a0

a0
� .            (82) 

Against this measure, solutions calculated with the mitigation design in the examples above 
are very accurate.  The relative coefficient errors are consistently on the order of 10−15 or 
less. 
 
We shall return to this topic of solution error induced by the zero-guard range at the end of 
this section after we derive formulas for the zero-guard range.  There we show that relative 
coefficient error induced by the zero-guard range is a maximum of 3.3×10−15 for all η with 
the post-processing constant ζ = 0.345. 
 
Figure 24a shows that the relative solution error abruptly drops an order of magnitude as 
|∆z/x0| surpasses the relative zero-guard range |∆z/z0|ZG = 3.82×10−8, and the calculated z2 
and z3 values are no longer reset to x0.  Because z2 and z3 approximate x0 and 
|x0/xA| = |1/η| < ζ = 0.345, the Figure 12 cubic-equation post-processing algorithm uses the 
accurately-calculated z1 = xA solution to recalculate the smaller-magnitude solutions z2 and 
z3.  The post processing holds the relative solution errors to the quantum-uncertainty level 
or less. 
 
If instead the cubic-equation solutions are calculated with the Figure 1 algorithm (no 
round-off error mitigation), then the z2 and z3 relative errors, shown in Figure 24b, 
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consistently exceed the quantum uncertainty by an order of magnitude.  These larger 
errors occur because the ratios |z1/z2| and |z1/z3| are close to η = |xA /x0| = 53.3333, a ratio 
large enough that magnitude-type error magnification exacerbates the multiplicity error 
magnification.  The mitigation-design post processing eliminates the magnitude-type error 
magnification. 
 
The particular values x0 = 1.2 and xA = 64 (η = |xA /x0| = 53.3333) were selected for this 
trial to show how large the calculated solution error can grow without the mitigation 
design.  Any combination of x0 and xA values such that |η − 1| ≥ 1 produces an error plot 
similar to Figure 24a when mitigation is used.  Solution error is much more variable 
without mitigation.  Sometimes (for example x0 = 1.2, xA = 60 ⇒ η= 50) calculation 
without mitigation produces accurate solutions for the multiplicity condition (∆x = 0).  
Then the error plot at small ∆z/x0 is the same as that with mitigation.  The values x0 = 1.2 
and xA = 64 avoid this situation, and the ratio xA /x0 is great enough to produce significant 
magnitude-type error magnification. 
 
Figures 25 and 26 above plot calculated-solution relative error versus ∆z/x0 for the two 
small η − 1 values of Figure 23.  Again x0 = 1.2.  Figure 25 has xA = 1.21 and 
η − 1 = 0.00833; Figure 26 has xA = 1.20012 and η − 1 = 1×10−4.  The errors in Figures 25a 
and 26a, where solutions are calculated with the mitigation design, show the same regular 
plot pattern as in Figure 24a with its large η − 1.    The errors in Figures 25b and 26b, 
where solutions are calculated without the mitigation design, have plot patterns that are 
less regular, but the errors do not exceed the quantum uncertainty.  The small η − 1 values 
imply that the 0. three cubic-equation solutions are close in value so that there is no 
magnitude-type error magnification.  The η − 1 is so small and the three cubic-equation 
solutions are so close in value that we could properly label Figures 25 and 26 as 
multiplicity 3 near miss.  The major benefit of the mitigation design at these small η − 1 
values is its consistent accurate solutions at the true multiplicity condition ∆z = 0. 

Case: x0 = 0 
We now return to Equations (129) and (137) to show that the relative quantum 
uncertainties for x3 and x2 are very small, on the order ε, for x0 = 0 and real ∆z = ∆x.  The 
mitigation design produces solution relative error that is likewise small, but error grows 
very large without mitigation.  The case of x0 = 0 and imaginary ∆z = i∆y is examined later. 
   
The condition x0 = 0, ∆z = ∆x implies that x2 = −x3 = ∆x.  Equations (122) to (124) for the 
cubic-equation coefficients simplify to 

 a2 = − xA,       a1 = −∆x2,      a0 = xA ∆x2     for      x0 = 0, ∆z = ∆x. 

The upper bound of ∆x is limited by the restriction that x2 = ∆x cannot exceed the midpoint 
between x3 = −∆x and z1 = xA: 
 x2 = ∆x   ≤   (xA + x3)/2 = (xA −∆x)/2       ⇒         0 < ∆x  ≤  xA / 3. 
 

From the foregoing, Equations (126) for δp3 and (134) for δp2 simplify to  
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 δp3 = δp2 = xA ∆x2 ε,   and 

Equations (129) for δx3/x3 and (137) for δx2/x2 become 

�
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�
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+ �3 +
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∆x
�  �

δx3
x3
�
2

+ 2 �1 +
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�  �

δx3
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� −

xA
∆x

ε = 0,        x0 = 0,   ∆z = ∆x          

�
δx2
x2
�
3

+ �3 −
xA
∆x
�  �

δx2
x2
�
2

+ 2 �1 −
xA
∆x
�  �

δx2
x2
� −

xA
∆x

ε = 0,        x0 = 0,   ∆z = ∆x.         

 
We could solve these two cubic equations for δx3/x3 and δx2/x2, but the cubic and quadratic 
terms are negligible and can be dropped.   Solving the resultant linear equations produces 
the same absolute values |δx3/x3|QU and |δx2/x2|QU as do the cubic equations: 

�
δx3
x3
�
QU

=
ε

2(1 + ∆x/xA)             �
δx2
x2
�
QU

=
ε

2(1 − ∆x/xA)          x0 = 0,   0 < ∆x/xA ≤ 1/3. 

When ∆x/xA = 0, then x3 = x2 = 0, and |δx3/x3|QU = |δx2/x2|QU = ε/2.  When ∆x/xA = 1/3, its 
maximum value, then |δx3/x3|QU = 3ε/8, and |δx2/x2|QU = 3ε/4.  Thus, the relative quantum 
uncertainties |δx3/x3|QU and |δx2/x2|QU are always less than ε for x0 = 0. 
 
Figure 27 below plots trial values of solution relative error versus |∆z/xA| for multiplicity 2 
near miss with x0 = 0.  The figure shows error for calculation with the mitigation design 
and without mitigation.  The mitigation design holds relative solution error to the order of 
the quantum uncertainty around 10−16.  Without mitigation, relative solution error 
increases as the reciprocal of |∆z/xA|.  The small-magnitude cubic-equation solutions x2 and 
x3 equal ±∆z, whereas the large solution is z1 = xA.  Thus |x3/xA| = |x2/xA| = |∆z/xA|.  Without 
the mitigation design’s post processing, magnitude-type error magnification overwhelms 
the small |∆z/xA| values. 
 
Quantum Uncertainty for Imaginary ∆z = i∆y 
This section derives the formula for the relative quantum uncertainty |δy2/z2|QU when ∆z 
has the imaginary value ∆z = i∆y.  This is the same |δy2/z2|QU that appears as the green 
curve in Figures 23 through 26. 
 
The cubic polynomial p(z) has the three roots z1 = xA ≠ 0, z2 = x0 + i∆y and z3 = x0 − i∆y. 

p(z) =  z3+a2z2+a1z+a0 = (z−xA)(z−z2)(z−z3) = (z − xA)(z − x0 − i∆y)(z − x0 + i∆y) (140) 
Equation (3) gives the coefficients as 

a2 = − (xA + 2x0),   a1 = 2x0xA + x02 + ∆y2,    a0 = −xA (x02 + ∆y2)   for  ∆z = i∆y. (141) 
 
Because the multiplicity 2 near-miss roots z2 and z3 are a complex conjugate pair, we need 
examine only one of them:  z2 = x0 + i∆y.  The total quantum uncertainty |δz2|QU = 
|δx2+iδy2|QU is dominated by the imaginary component as we shall see.  Thus, the relative 
value |δz2/z2|QU becomes |δy2/z2|QU. 
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Figure 27   Example Solution Error, Cubic Multiplicity 2 Near Miss for x0 = 0 

 
The derivation of |δz2/z2|QU is similar to that of |δx3/x3|QU above for real ∆z = ∆x.  The cubic 
p(z2) for z2 = x0 + i∆y is  

p(z2) = x03 + i3x02∆y − 3x0∆y2 − i∆y3 + a2[(x02 − ∆y2) + i2x0∆y] + a1(x0 + i∆y) + a0 . 

The cubic is real and equal to zero, so p(z2) is evaluated as the sum of its real terms only. 

p(z2) = x03 − 3x0∆y2 + a2x02 − a2∆y2 + a1x0 + a0 = 0. 

The least significant bit of this calculated p(z2) is the least significant bit of the term having 
the greatest absolute value.  The value of this least significant bit is therefore  

 δpy = MAX(|x03|, |3x0∆y2|, |a2x02|, |a2∆y2|, |a1x0|, |a0|)ε . (142) 

For z very close to z2, δpy is the range of p(z) values that could be stored in the computer as 
p(z) = 0. 
 
We find the quantum uncertainty |δz2|QU in root z2 = x0 + i∆y corresponding to δpy by 
solving the equation p(z2 + δz2) = δpy for δz2 = δx2 + iδy2.  When the imaginary 
displacement i∆y is 0, then root z2 is the double root x0, which occurs at the local maximum 
of cubic p(z).  Any real value of δz2 produces a negative value of p(z2 + δz2) = p(x0 + δz2).   
The relevant solution of p(z2 + δz2) = p(x0 + δz2) = δpy > 0, in that case, cannot be real.  To 
the contrary, error value δz2 = δx2 + iδy2 is nearly pure imaginary for ∆y = 0.  The real 
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* Note: Any relative solution error value less than 10−16 is plotted as 10−16. 



Cubic Equation Analysis – Multiplicity 2 Near Miss 

9/24/2021  Page 112 of 136 

component δx2 is possibly significant only when ∆y increases above 0.  Even then, 
|δx2| << |δy2|, as we will show. 
 
Solve the equation p(z2 + δz2) = δpy by using Equation (140) with z = z2 + δz2 
= x0 + δx2 +i(∆y+ δy2). 

 p(z2 + δz2) =  (z2 + δz2 − xA)( z2 + δz2 − z2)( z2 + δz2 − z3) = δpy 

  [x0 − xA + δx2 +i(∆y+ δy2)](δx2 + iδy2)[δx2 + i(2∆y+δy2)] − δpy = 0 

Expand and simplify the left side of this equation to produce real and imaginary 
components, each with several terms.  Both the sum of real components and the sum of 
imaginary components must equal zero.  The result is two equations for the two unknowns 
δx2 and δy2. 
 REAL 

δx23 − 3δx2δy22 − (xA − x0)δx22 − 6∆yδx2δy2 + (xA − x0)δy22 − 2∆y2δx2
+2(xA − x0)∆yδy2 − δpy = 0                (143) 

 IMAGINARY 
3δx22δy2 − δy23 + 3∆yδx22

−2(xA − x0)δx2δy2 − 3∆yδy22 − 2(xA − x0)∆yδx2 − 2∆y2δy2 = 0 
               (144) 

 
The following derivation and simplifying assumptions produce reasonably accurate 
solutions δx2 and δy2 to the above simultaneous equations. 
 
Start with the IMAGINARY equation.  Drop the first and third terms, which are quadratic in 
δx2.  Solve for δx2. 

δx2 = −�
2∆y2 + 3∆yδy2 + δy22

2(xA − x0)(δy2 + ∆y)�  δy2 

This equation shows that |δx2| << |δy2| because (xA − x0) and ∆y are both positive, δy2 is 
assumed positive, and (xA − x0) is assumed much greater than ∆y and δy2. 
 
Because |δx2| << |δy2|, the uncertainty value δz2 = δx2 + iδy2 is dominated by its imaginary 
component, and all of the terms containing δx2 in the REAL equation, Equation (143), are 
dropped.  Write Equation (143) as a quadratic equation in δy2. 

δy22 + 2∆yδy2 −
δpy

xA − x0
= 0 . 

 
Divide this equation by |z2|2 to normalize δy2 by |z2| = �x02 + ∆y2.   

�
δy2
|z2|�

2

+ 2
∆y
|z2| �

δy2
|z2|� −

δpy
|z2|2(xA − x0) = 0                              (145) 
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We refine this quadratic equation separately for the two cases: 
 x0 ≠ 0, which produces |δy2/z2|QU in Figure (23) above and  
 x0 = 0 for which |δy2/z2|QU is on the order of ε. 

Case: x0 ≠ 0 
Define the following: 
 ∆v ≡ ∆y/|x0| = |∆z/x0|               δpuy ≡ δpy/x03. (146) 

Equation (141) for the coefficients a2, a1, and a0 and Equation (142) for δpy give us δpuy as 

δpuy  = sgn(x0) MAX(1,3∆v2, |η + 2|, |(η + 2)∆v2|, |2η + 1 + ∆v2|, |η(1 + ∆v2)|)ε (147) 

where η = xA/x0 from Equation (110).  The function sgn(x0) is the sign of x0 given by (133).  
Equation (145) finally becomes 

�
δy2
|z2|�

2

+ 2
∆v

√1 + ∆v2
�
δy2
|z2|� −

δpuy
(1 + ∆v2)(η − 1) = 0    for   ∆z = i∆y  and  x0 ≠ 0.         (148) 

 
The relative quantum uncertainty |δy2/z2|QU for y2 is the minimum positive value of the two 
Equation (148) solutions.  It is plotted as the green curve versus ∆v = |∆z/x0| in Figures 23 
to 26. 

Case: x0 = 0 
The cubic polynomial p(z) for the case x0 = 0 has the three roots z1 = xA ≠ 0, z2 = i∆y and 
z3 = − i∆y, (∆y ≠ 0).  Thus |z2| = ∆y.  Equation (140) becomes 

 p(z) =  z3+a2z2+a1z+a0 = (z−xA)(z−z2)(z−z3) = (z − xA)(z − i∆y)(z + i∆y). 

The coefficients of p(z) from Equation (141) are 

 a2 = − xA,     a1 = ∆y2,      a0 = −xA ∆y2     for  ∆z = i∆y   and   x0 = 0, 

and δpy in Equation (142) is 

 δpy = MAX(0,0,0, xA∆y2, 0, xA∆y2)ε = xA∆y2ε. 

Quadratic Equation (145) becomes 

�
δy2
|z2|�

2

+ 2 �
δy2
|z2|� − ε = 0. 

The value of ε ≈ 2.22×10−16 is so small that the two solutions are δy2/z2 ≈ −2 and the 
relative quantum uncertainty 
 |δy2/z2|QU ≈ ε/2. 
 
Zero-Guard Range and Lower Bound of Post-Processing Constant ζ  
This subsection derives relative zero-guard range |∆z/z0|ZG for the multiplicity 2 near-miss 
condition and shows that the Figure 12 post-processing constant ζ should have a minimum 
value of about 0.25.  At this minimum ζ value, post processing holds the zero-guard range 
to 3.1 times the quantum uncertainty (ZG/QU < 3.1).  The next (final) subsection shows 
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that the selected ζ = 0.345 value minimizes relative coefficient error produced by zero-
guard processing and holds the ratio ZG/QU to 2.3. 
 
The cubic-equation post-processing algorithm (Figure 12) uses the constant ζ as follows.  
Given the calculated solutions zA, zB, and zC of a cubic equation such that |zC| ≤ |zB| ≤ |zA|, post 
processing recalculates both zB and zC if |zB| < ζ |zA|.  It recalculates only zC if |zC| < ζ|zA| ≤ |zB|.  
The recalculation prevents contamination of the smaller-magnitude solution(s) from 
magnitude-type error magnification.  The two smaller-magnitude solutions are most 
sensitive to magnitude-type error magnification when they are nearly equal to each other: 
multiplicity 2 near miss.  We therefore adjust the value of ζ to accommodate the 
multiplicity 2 near-miss condition. 
 
Unless explicitly stated otherwise, the term “post processing” in the following discussion 
refers specifically to post-processing recalculation of the two near-miss solutions 
z2 = x2 = x0 + ∆x  and  z3 = x3 = x0 − ∆x when they are also the two smallest-magnitude 
solutions.  If x0 < 0 and x0 < xA < −x0 so that solution z1 = xA has the smallest magnitude, 
then we will explicitly indicate post-processing recalculation of the simple small-magnitude 
solution z1 as appropriate. 
 
We have already demonstrated a primary benefit of using the relatively high value of 
ζ = 0.345 in Figure 22 for the multiplicity 2 condition and in Figure 24 for multiplicity 2 
near miss.  Without error mitigation’s post processing, Figure 22b shows that relative 
solution error for the small-magnitude double solution z2 = z3 = x0 (red dots and yellow 
dots) begins a steady increase as the ratio η − 1 on the horizontal axis climbs above 10.  
Here η = xA/x0 where xA is the value of the large-magnitude solution z1.  The z2 and 
z3 worst-case error values at η − 1 > 10 are considerably greater than the quantum 
uncertainty of 2×10−8 shown as the solid black line.  By contrast, post processing in Figure 
22a holds the relative solution error to around 10−16 at η − 1 > 10. 
 
Given our three cubic-equation solutions z1 = xA, z2 = x0 + ∆z, and z3 = x0 − ∆z, the 
Figure 12 post-processing algorithm recalculates the small-magnitude solutions z2 and z3 
when |z2| < ζ|z1| = ζ|xA|.  The displacement magnitude |∆z| is small relative to |x0| in our case, 
so that recalculation occurs approximately when |x0| < ζ|xA|  ⇔  |x0/xA| = |1/η| < ζ.  The 
value ζ = 0.345 implies that post-processing recalculates z2 and z3 for |η| > 1/0.345 ≈ 2.9.  
In Figure 22a, post processing recalculates z2 and z3 for η − 1 > 1.9. 
 
Figure 24 compares relative solution error with and without error mitigation for the 
multiplicity 2 near-miss condition η − 1 = 52.3333.  The solution error in Figure 24a with 
mitigation is markedly less than in Figure 24b without mitigation.  At this high η − 1 value, 
mitigation’s post processing is responsible for holding down the solution error. 
 
Post processing not only eliminates multiplicity error magnification, but it also controls 
solution error caused by a high zero-guard range as exemplified in Figure 28 below.  As a 
reference, the figure duplicates the relative quantum uncertainty and solution error from 
Figure 24b in which solutions are calculated without round-off error mitigation.  The value 
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of η = xA/x0 is large: η − 1 = 52.3333.  The purple and light-blue markers indicate solution 
error caused by zero-guard processing when it is turned on.  Post processing is also turned 
on for the light-blue circles, just as in Figure 24a.  Here the zero-guard range and 
corresponding relative solution error is limited to 3.82×10−8.  This value is 1.8 times the 
relative quantum uncertainty.  The purple squares indicate zero-guard solution error when 
zero-guard processing is turned on but post processing is turned off.  Now the zero-guard 
range and corresponding relative solution error climb to 5.6×10−7, a value over 26 times 
greater than the relative quantum uncertainty. 
 

Figure 28   Effect of Post Processing on Zero-Guard Solution Error,                                       Cubic 
Multiplicity 2 Near Miss for η − 1 = 52.3333 

 
At large values of η = xA/x0, the potential solution error caused by zero-guard processing 
becomes the driving need for post processing; we therefore use zero-guard range as a 
guide for selecting the minimum ζ value. 
 
The three cubic-equation solutions for the multiplicity 2 near-miss condition are 

 z1 = xA ≠ 0,                        z2 = x0 + ∆z,                   z3 = x0 − ∆z  (149) 

where ∆z = ∆x (real) or ∆z = i∆y (imaginary).  Also,  xA > x0,  ∆x > 0,  and  ∆y > 0. 
 
Without post processing, the zero-guard range |∆z|ZG is the maximum ∆x or ∆y value such 
that the zero-guard processing in the Figure 9 cubic-equation algorithm resets the 

Relative 
Solution 

Error 
 

|∆z/x0| 

Relative Solution Error 
Without Mitigation 

 |δx3/x3| ∆z = ∆x 
 |δx2/x2| ∆z = ∆x 
 |δz2/z2| ∆z = i∆y 

Zero-Guard Relative Solution Error 
 |δx3/x3| Without Post Processing 
 |δx3/x3| With Post Processing 

Relative Quantum Uncertainty 

x0 = 1.2,   xA = 64                 η = xA/x0,       η − 1 = (xA − x0)/x0 



Cubic Equation Analysis – Multiplicity 2 Near Miss 

9/24/2021  Page 116 of 136 

calculated parameter R = r2 + q3 to zero and then calculates solutions z2 and z3 as the same 
real value.  The corresponding relative zero-guard range is |∆z/x0|ZG.  Because |∆z/x0|ZG << 1, 
we approximate its value from xA and x0 without regard for the displacement ∆z in 
Equation (149).  That is, |∆z/x0|ZG is calculated as a property of the multiplicity 2 condition 
z1 = xA,  z2 = z3 = x0. 
 
Post processing, which mitigates against excessive zero-guard range, has its own zero-
guard range.  Post processing recalculates z2 and z3 as solutions of a quadratic equation.  
The post-processing zero-guard range |∆z|ZG is the maximum ∆x or ∆y value such that the 
Figure 8 quadratic-equation algorithm resets the determinate D to zero and then calculates 
solutions z2 and z3 as the same real value. 
 
Later, this section derives formulas to calculate the relative zero-guard range both without 
and with post processing.  First, however, we present plots of the resulting zero-guard 
range values, which indicate that ζ should have a value of at least 0.25. 
 
Figure 29 provides a global view of relative zero-guard range |∆z/x0|ZG versus |η − 1| across 
many orders of magnitude.  As a reference, the figure also includes the double-root, relative 
quantum uncertainty |δz/x0|QU from Figure 21 as the black curve. 
 
Figure 29a for the case x0 > 0 is straight forward because xA > x0 > 0, so η = xA/x0 > 1 and 
η − 1 > 0.  Because the double root x0 = |x0| is always less than the simple root xA = |xA|, 
post-processing recalculation of the smaller-magnitude roots x2 and x3 is possible for any 
value of η − 1.  The green curve shows relative zero-guard range with post-processing 
recalculation, the blue curve without.  The “With Post Processing” green curve is dashed 
where it predicts zero-guard range values less than the quantum uncertainty; such a 
prediction is unreliable in real-world computation. 
 
The Post Processing green curve in Figure 29b for x0 < 0 has a limited extent because post 
processing is possible only if |x0| < |xA|.  With x0 < 0, |x0| may be greater than, equal to, or less 
than |xA|.  The inequalities x0 < 0 and x0 < xA are given, so dividing the inequality x0 < xA by 
−x0 produces −1 < −η = xA/(−x0)  and  0 < 1 − η.  Thus, the horizontal axis of our log-log plot 
is 1 − η.  The post-processing recalculation requirement |x0| < |xA| implies that xA > −x0,  
−η > 1,  and  1 − η > 2.  Thus, the green curve for relative zero-guard range with post 
processing applies only to 1 − η > 2. 
 
In both Figures 29a and 29b, the blue curves show that zero-guard range without post 
processing is only a small multiple of quantum uncertainty for |η − 1| less than about 1.  As 
|η − 1| becomes a bit greater than 1, zero-guard range grows many times greater than 
quantum uncertainty.  This large ratio of zero-guard range to quantum uncertainty at 
|η − 1| greater than 1 is a potential source of calculation error.  We prevent that problem by 
employing post processing with the proper choice of constant ζ. 
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Figure 29 Relative Zero-Guard Range With And Without Post Processing versus |η 
− 1| -- Cubic Equation Multiplicity 2  

 

b)  x0 < 0 

1 − η = |(xA − x0)/x0| 

Relative 
Zero-Guard 

Range 
|∆z/x0|ZG 

Relative Quantum  
Uncertainty |δz/x0|QU 

Without 
Post Processing 

With Post Processing 

xA  > 0 xA < 0 

Relative 
Zero-Guard 

Range 
|∆z/x0|ZG 

η − 1 = (xA − x0)/x0 

a)  x0 > 0 

Relative Quantum  
Uncertainty |δz/x0|QU 

Without 
Post Processing 

With Post Processing 



Cubic Equation Analysis – Multiplicity 2 Near Miss 

9/24/2021  Page 118 of 136 

Figure 30 replots the relative zero-guard range from Figure 29 as a function of |1/η| on a 
linear horizontal scale so that we can determine an appropriate minimum value for ζ.  Post-
processing recalculates the small-magnitude solutions z2 and z3 approximately 
when |1/η| < ζ.  Figure 30 shows that, without post processing (blue curve), the relative 
zero-guard range increases rapidly as |1/η| falls below 0.25.  Therefore ζ should have a 
value of at least 0.25 to avoid excessive zero-guard range and the resultant solution error. 
 
The following two subsections derive formulas for relative zero-guard range |∆z/x0|ZG 
without and with post processing.  These formulas produce the plots in Figures 29 and 30 
above. 

Derivation of Zero-Guard Range without Post-Processing Recalculation 
The zero-guard range for a cubic equation without post-processing recalculation is defined 
in terms of parameters R and RE ≥ 0 calculated in the Figure 9 cubic equation algorithm.  If 
R = 0, then two solutions of the cubic equation equal the same real value x0 ≠ 0.  If the 
calculated R value satisfies |R| < RE ε, the algorithm resets R to zero and calculates two 
solutions as the same real value.  The range of R values (−RE ε, RE ε) about R = 0 
corresponds to a range of solution values (z0 − ∆z,  z0 + ∆z) about z0.  We call this ∆z value 
the zero-guard range |∆z|ZG about z0.  The relative zero-guard range is |∆z/x0|ZG = |∆z|ZG/|z0|. 
 
We start with the multiplicity 2 cubic equation with solutions z1 = xA,  z2 = z3 = x0.  The 
cubic polynomial and its coefficients are given in Equations (106) to (109) and repeated 
here. 

 p(z) = z3 + a2 z2 + a1 z + a0  =  (z − x0)2 (z − xA) (150) 
where 
 a2 = −(xA + 2x0),        a1 = 2xAx0 + x02,        a0 = −xA x02,      x0 ≠ 0,    xA ≠ 0. (151) 

 p(z) = 0         for         z = x0   or   z = xA  

 xA  >  x0   by convention.  

The Inequality (109) has xA ≥ x0, but the equality condition xA = x0 for multiplicity 3 does 
not apply here where the topic is multiplicity 2 and its near miss.  We therefore apply only 
the strict inequality xA > x0. 
 
The Figure 9 cubic equation algorithm calculates parameters a2E, a1E, a0E, q, qE, r, rE, R, and 
RE as follows. 

 a2E = |a2|                         a1E = |a1|                          a0E = |a1| (152) 

 q = a1/3 − a22/9 r = (a2a1 − 3a0)/6 − a23/27 (153) 

 qE = a1E/3 + 2|a2| a2E/9 rE = |a1/6 − a22  /9| a2E + |a2| a1E /6 + a0E/2 (154) 

 R = r2 +  q3  (155) 

 RE = 2|r| rE + 3q2 qE  (156) 
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Figure 30 Relative Zero-Guard Range With And Without Post Processing versus 
|1/η|  --   Cubic Equation Multiplicity 2 
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Apply Equations (151) for coefficients a2, a1, and a0 and Equation (152) for a2E, a1E, and a0E 
to the formulas above to express q, r, qE, rE, and RE as functions of xA and x0. 

 q = −(xA − x0)2/9  <  0 r = (xA − x0)3/27  >  0 (157) 

qE =
|2xAx0 + x02|

3
+

2(xA + 2x0)2

9
                                                                                               (158) 

  

rE = �
2xAx0 + x02

6
−

(xA + 2x0)2

9
� |xA + 2x0| +

|xA + 2x0||2xAx0 + x02|
6

+
|xAx02|

2
          (159) 

 

RE =
2

27
|xA − x0|3rE +

1
27

(xA − x0)4qE                                                                                    (160) 

Note that Equation (155) for R and (157) for q and r produce R = 0: 

R = r2 + q3 =
(xA − x0)6

36
+

(−1)3(xA − x0)6

36
= 0 

 
The convention xA > x0 implies that the double root x2 = x3 = x0 of p(z) occurs at a local 
maximum of p(z) for real values x of z.  We simplify this derivation by taking z to be a real 
value z = x so that p(z) = p(x).  The cubic p(x), its derivative p′(x), and its second 
derivative p′′(x) satisfy p(x0) = p′(x0) = 0 and p′′(x0) < 0.  Thus p(x) has a negative 
incremental value (∆p < 0) when x deviates from x0 by a positive real increment ∆x.  That 
is, ∆p ≡ p(x0 − ∆x) < 0 and p(x0 − ∆x) − ∆p = 0.  This means that the new cubic polynomial 
p(x) − ∆p has a root x0 − ∆x, which corresponds to root x3 = x0 of p(x).  If the deviation 
|xA − x0| is not too small, then p(x) − ∆p also has a root nearly equal to x0 + ∆x, which 
corresponds to root x2 = x0 of p(x). 
 
We define ∆x with respect to the least real root x0 − ∆x rather x0 + ∆x to assure that ∆p is 
negative regardless of how small |xA − x0| is.  Suppose we had instead chosen 
∆p ≡ p(x0 + ∆x) < 0 and it happens that xA = x0.  Then p(x) = (x − x0)3, and 
∆p ≡ p(x0 + ∆x) = ∆x3 < 0, which is impossible for our positive real increment ∆x. 
 
The increment ∆x is the relative zero-guard range |∆z |ZG we seek if the parameter R for the 
cubic p(x) − ∆p is ∆R such that |∆R| = RE ε.  The derivation of the zero-guard range 
∆x = |∆z|ZG proceeds as follows. 
 
Evaluate the cubic polynomial increment ∆p ≡ p(x0 − ∆x) using Equations (150) and (151). 

 ∆p = p(x0 − ∆x) = (x0 − ∆x)3 − (2x0 + xA)(x0 − ∆x)2 + (2x0xA + x02)(x0 − ∆x) − xA x02 

 ∆p = −∆x3 − (xA − x0)∆x2 

We have xA > x0 and ∆x > 0 by definition, so ∆p < 0, ∆p = −|∆p|, and the last expression may 
be written 
 ∆x3 + (xA − x0)∆x2 − |∆p| = 0. (161) 
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The cubic polynomial p(x) − ∆p has the same quadratic and linear coefficients a2 and a1 as 
does p(x), but the constant coefficient for p(x) − ∆p is a0 + ∆a0 where 

 ∆a0  =  − ∆p  =  |∆p|  >  0. 

Equation (153) for q and r shows that this incremental change to a0 does not affect q but 
does produce a corresponding incremental change to r: 

 ∆r = −∆a0/2 = ∆p/2  <  0. 
 
The incremental change in R, Equation (155), becomes 

 ∆R =2r∆r = r ∆p,   which implies   ∆p = ∆R /r  <  0. 
 
The value of r in Equation (157) is positive, so ∆R is negative.  Set ∆R = −RE ε so that ∆p 
becomes 
 ∆p = −RE ε/r, 

and ∆x in Equation (161) becomes the relative zero-guard range |∆z|ZG. 
 
Substitute this result for ∆p, Equation (160) for RE, and Equation (157) for r into Equation 
(161) to obtain the following cubic equation in ∆x. 

 ∆x3 + (xA − x0)∆x2 − |2rE + (xA − x0)qE|ε = 0 (162) 
 
Divide this equation through by x03 to obtain a simplified cubic equation in the normalized 
increment ∆u ≡ ∆x/x0.  The equation is simplified because it contains a single parameter, η 
≡ xA/x0, as will be demonstrated.  The relative zero-guard range will then be 
|∆z/x0|ZG = |∆u|. 

∆u3 + (η − 1)∆u2 −
1
x03

[2rE + (xA − x0)qE]ε = 0                         (163) 

 u ≡ z/x0           η ≡ xA/x0 
 
The normalized coefficients a2u, a1u, and a0u are given in Equation (112) as 

 a2u ≡ a2/x0 = −(η + 2)               a1u ≡ a1/x02  = 2η + 1                    a0u ≡ a0/x03 = −η. 

The corresponding error size parameters are 

a2uE = |a2u| = |η + 2|              a1uE = |a1u| = |2η + 1|                   a0uE = |a0u| = |η|. 
 
The normalized versions of q, r, qE, and rE in Equations (157) to (159) are 

 qu ≡ q/x02  =  −(η − 1)2/9                                   ru ≡ r/x03 =  (η − 1)3/27 

quE ≡
qE
x02

=
|2η + 1|

3
+

2(η + 2)2

9
                                                                                               (164) 
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ruE ≡
rE

|x03| = �
2η + 1

6
−

(η + 2)2

9
� |η + 2| +

|η + 2||2η + 1|
6

+
|η|
2

                                    (165) 

 
Note that to maintain ruE as a positive value, rE is normalized by |x03| rather than x03. 
 
For the case x0 > 0, we have x03 = |x03|, and Equation (163) becomes 

∆u3 + (η − 1)∆u2 − [2ruE + (η − 1)quE]ε = 0        x0 > 0,     ∆u > 0.            (166) 
CUBIC EQUATION FOR RELATIVE ZERO-GUARD RANGE |∆z/x0|ZG  = |∆u| 

WITHOUT POST PROCESSING FOR x0 > 0 
 
For the case x0 < 0, we have x03 = −|x03| = −x0x02, so the constant coefficient in Equation 
(163) must be positive.  The coefficient becomes 

+
2rE + (xA − x0)qE

|x03| ε = �2ruE +
xA − x0
−x0

quE� ε = [2ruE + (1 − η)quE]ε. 

Equation (163) becomes 

∆u3 − (1 − η)∆u2 + [2ruE + (1 − η)quE]ε = 0        x0 < 0,     ∆u < 0.            (167) 
CUBIC EQUATION FOR RELATIVE ZERO-GUARD RANGE |∆z/x0|ZG  = |∆u| 

WITHOUT POST PROCESSING FOR x0 < 0 
 
The calculation of relative zero-guard range |∆z/x0|ZG = |∆u| (blue curves in Figures 29 and 
30) is summarized as follows.  By convention xA > x0 where xA is the simple root and x0 is 
the double root of the relevant multiplicity 2 cubic polynomial p(z).  Calculate quE and ruE 
from η ≡ xA/x0 using Equations (164) and (165).  For the case x0 > 0, solve Equation (166) 
for ∆u.  The relative zero-guard range |∆z/x0|ZG is the positive real solution.  For the case 
x0 < 0, solve Equation (167) for ∆u.  The relative zero-guard range |∆z/x0|ZG is the absolute 
value of the negative real solution. 
 
Equations (166) and (167) show how relative zero-guard range |∆z/x0|ZG without post 
processing must increase in proportion to |η−1| for large |η−1| in the blue curve of Figures 
29 and 30.  The quadratic coefficient in those two equations is η−1, so at large |η−1|, the 
cubic term becomes irrelevant.  The equations become quadratic equations in ∆u.  
Equations (164) and (165) show that both ruE  and |η−1|quE increase as |η3| for large |η|.  
Equations (166) and (167) without the cubic term have the quadratic coefficient increase 
as |η| and the constant coefficient increase as |η3|, so ∆u2 must increase as η2 and 
|∆z/x0|ZG = |∆u| must increase as |η|. 
 
Post processing avoids this troublesome growth of relative zero-guard range as now 
demonstrated. 
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Derivation of Zero-Guard Range with Post-Processing Recalculation 
This derivation considers the case in which the real, multiplicity near-miss roots 
x2 = x0 + ∆x and x3 = x0 − ∆x of the cubic p(x) are calculated by the Figure 9 cubic-equation 
algorithm and are then both recalculated by the Figure 12 post-processing algorithm.  The 
post-processing algorithm invokes the Figure 8 quadratic equation algorithm to recalculate 
z2 = x2 and z3 = x3 as solutions of a quadratic equation.  The quadratic equation algorithm 
calculates the determinate D and its error magnitude DE.  The case D = 0 corresponds to 
the multiplicity condition x2 = x3 = x0  ⇔  ∆x = 0.  If |D| < DE ε, then the algorithm resets D 
to zero and calculates x2 and x3 as the same real value.  The zero-guard range |∆z|ZG is the ∆x 
value that produces the determinate value such that |D| = DE ε.  The relative zero-guard 
range is |∆z/x0|ZG = |∆z|ZG / |x0|. 
 
The post-processing algorithm receives the following inputs from the cubic-equation 
algorithm: the cubic-equation coefficients a2, a1, a0, the corresponding error size 
parameters a2E, a1E, a0E, and the calculated real values z1, x2, x3, and y2 such that the three 
cubic-equation solutions are z1, z2=x2+ iy2, z3=x3− iy2.  We calculate zero-guard range at 
the multiplicity condition z1 = xA,  z2 = z3 = x2 = x3 = x0, y2 = 0, therefore a2, a1, a0, a2E, a1E, 
and a0E are given by Equations (151) and (152). 
 
The post-processing algorithm recalculates x2 and x3 as solutions x2 = Z1 and x3 = Z2 of the 
quadratic equation Zn2 + B Zn + C = 0.  Post processing uses the accurately calculated large-
magnitude solution z1 = xA and coefficients a0 and a1 to calculate C and B as 

 C = −a0/xA      and       B = (C − a1)/ xA.  

The values of a0 and a1 in Equation (151) for our multiplicity condition are a0 = −xA x02  and  
a1 = 2xAx0 + x02, so C and B are calculated as  C = x02  and  B = −2x0 . 
 
The algorithm also calculates the error size parameters xAE, CE, and BE corresponding to xA,  
B, and C.  The formulas are given in Equations (60), (59), and (61) respectively. 

 xAE = MAX( |xA|, |a2| ) (168) 

CE =  
1

|xA|  (a0E + |C|xAE)                                                                      (169) 

BE =
1

|xA| �a1E +
a0E
|xA| + �B +

C
xA
� xAE�                                               (170) 

 
The post-processing algorithm then provides its values of B, C, BE, and CE to the Figure 8 
quadratic equation algorithm to recalculate x2 = Z1 and x3 = Z2 as solutions of the quadratic 
equation Zn2 + B Zn + C = 0.  The quadratic equation algorithm calculates determinate D 
and its error size parameter DE as 

 D = B2 − 4C     and       DE = 2|B| BE + 4CE (171) 
 
For the multiplicity condition z2 = z3 = x2 = x3 = x0, we have  

 C = x02  and  B = −2x0, (172) 
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so, D = B2 − 4C = 0. 
 
However, the determinate D is not zero for the near-miss condition x2 = x0 + ∆x, 
x3 = x0 − ∆x.  Coefficient B given by B = −(x2 + x3) = −2x0 is independent of ∆x.  Coefficient 
C and determinate D are C = x2x3 = x02 − ∆x2 and D = B2 − 4C = 4∆x2. 
 
The increment ∆x is the zero-guard range |∆z|ZG when 4∆x2 = D = DE ε, so 

|∆z|ZG = �DEε
4

       and      |∆z/x0|ZG =  ��
DE

4x02
� ε                                               (173) 

The value |∆z/x0|ZG is the relative zero-guard range, which we now derive and which is 
plotted as the green curves in Figures 29 and 30.  Apply Equations (151) for a0, (152) for 
a0E, and (172) for C to Equation (169) for CE to obtain 

CE = x02  �1 +
xAE
|xA|�.  

 
Substitute this equation and B = −2x0 into Equation (171) for DE and divide through by 
4x02. 

DE

4x02
=  

BE
|x0| + 1 +

xAE
|xA|  

 
Use Equation(170) for BE, and apply Equations (151) and (152) for a1E and a0E and (172) 
for B and C.  Finally apply the definition η ≡ xA/x0. 

DE

4x02
=  �2 +

1
η
�  +  �

1
η
�  +   �

1
η
− 2�  

xAE
|xA|   +  1 + 

xAE
|xA|                             (174)  

 
To determine xAE/|xA|, apply a2 = −(2x0 + xA) from Equation (151) to xAE = MAX( |xA|, |a2| ) 
in Equation (168). 
 xAE = MAX( |xA|, |xA + 2x0| )  (175) 

The case x0 > 0 implies xA > x0 > 0 and xAE = |a2| = xA + 2x0. 

Then   x0 > 0   ⇒   
xAE
|xA| =

xA + 2x0
xA

= 1 +
2
η

. 

 
For the case x0 < 0, recall that xA > x0 and post-processing recalculation of z2 and z3 can 
occur only if |xA| > |x0|, that is, if xA > −x0 > 0.  Thus, |xA + 2x0| = |xA − 2|x0|| < |xA| = xA, and by 
Equation (175), xAE = |xA| = xA. 

Then   xA > −x0 > 0   ⇒   
xAE
|xA| = 1. 

 
The final expressions for DE/(4x02) in (174)become 
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For   x0 > 0   and   η > 1,         
DE

4x02
=  �2 +

1
η
� + �

1
η
� + �

1
η
− 2� �1 +

2
η
� + 1 + �1 +

2
η
�         (176) 

For   x0 < 0   and   η < −1,      
DE

4x02
=  �2 +

1
η
� + �

1
η
� + �

1
η
− 2� + 2.                                         (177) 

 
Use these equations and Equation (173), repeated below, to find relative zero-guard range 
|∆z/x0|ZG with post-processing recalculation.  These values are the green curves in Figures 
29 and 30. 

|∆z/x0|ZG =  ��
DE

4x02
� ε                              (173) 

 
Minimize Zero-Guard-Induced Relative Coefficient Error with ζ = 0.345  
This section calculates the relative coefficient error induced by zero-guard processing and 
shows that such error is minimized by selecting the value 0.345 for the post-processing 
constant ζ.  For a cubic equation with double solution z2 = z3 = x0, zero-guard processing 
assures that the corresponding calculated values z2C and z3C are equal to each other 
regardless of computer round-off error.  The zero-guard range |∆z|ZG is, however, a 
potential source of error.  If the true solutions are  z2 = x0 + ∆z  and  z3 = x0 − ∆z  
(multiplicity 2 near-miss) and |∆z| < |∆z|ZG, then zero-guard processing will incorrectly 
produce calculated solutions z2C and z3C that are equal to each other.  This section shows 
that any such zero-guard processing error is very small: the maximum relative coefficient 
error is 3.3×10−15. 
 
The relative coefficient errors δa2u, δa1u, and δa0u correspond to the cubic-equation 
coefficients a2, a1, and a0 and are defined by Equation (82): 

δa2u ≡ �
a2C − a2

a2
� ,      δa1u ≡ �

a1C − a1
a1

� ,      δa0u ≡ �
a0C − a0

a0
� .         (82)                    

The check coefficients a2C, a1C, and a0C in these formulas are produced from the calculated 
solutions z1C, z2C = x2C + iy2C, and z3C = x3C − iy2C using the check equations, Equation (3).  
Given cubic-equation true solutions  

z1 = xA,         z2 = x0 + ∆z         and         z3 = x0 − ∆z, 

the relative coefficient errors δa2u, δa1u, and δa0u are functions of η ≡ xA/x0, but they depend 
also on whether x0 is positive or negative and on whether or not post processing 
recalculates any solutions. 

By convention          xA  >  x0,    Equation (109). 
 
The following paragraphs show that the greatest relative coefficient error is δa0u when 
x0 > 0 and δa1u when x0 < 0.  Each of these errors has a maximum value of 3.3×10−15 with 
ζ = 0.345.  Lesser values of ζ increase the maximum δa0u; greater values of ζ increase the 
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maximum δa1u.  Thus assigning ζ the value 0.345 minimizes the greatest relative coefficient 
error to 3.3×10−15. 
 
We first present plots of the δa2u, δa1u, and δa0u and then derive their formulas. 
 
Relative Coefficient Error Results 
Figures 31 and 32 below plot δa2u, δa1u, and δa0u versus η with ζ = 0.345.  Figure 31 
presents the case x0 > 0, Figure 32, the case x0 < 0. 
 
Figure 31 shows the simpler case: x0 > 0, which implies that xA > x0 > 0 and η = xA/x0 > 1.  
Post processing recalculates the multiplicity 2 near-miss solutions when |z2| ≈ x0 < ζxA, that 
is when η = xA/x0 > 1/ζ ≈ 2.9.  When η ≤ 1/ζ, there is no post-processing recalculation, 
which produces δa2u = δa1u = 0 and a δa0u (red curve) that increases monotonically with η. 
 
Figure 31   Zero-Guard-Induced Relative Coefficient Error with ζ = 0.345 and x0  >  0 
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The maximum δa0u is 3.3×10−15.  This is the no-post-processing value of δa0u at the 
transition η = 1/ζ ≈ 2.9.  If ζ were any less than 0.345, then the transition value η = 1/ζ 
would be greater than 2.9, the transition point would move to the right, and the maximum 
relative coefficient error would increase above 3.3×10−15 as shown by the red dashed 
curve. 
 
Figure 32 below plots the relative coefficient errors δa2u, δa1u, and δa0u for the case x0 < 0. 
 
Figure 32   Zero-Guard-Induced Relative Coefficient Error with ζ = 0.345 and x0 <  0 

 
The inequalities x0 < 0 and  xA > x0 imply that η ≡ xA/x0 has a maximum value of 1, which 
occurs when xA = x0 < 0.  As xA increases above x0 = −|x0|, η decreases without limit. 
 
Figure 32 above plots δa2u, δa1u, and δa0u versus −η = xA/(−x0), which increases as xA 
increases.  Post processing recalculates z1C (the calculated value of the simple root z1 = xA) 
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when |xA| < ζ|x0|, that is when | −η| < ζ  or  − ζ <  −η < ζ.  Post processing recalculates the two 
near-miss roots z2C and z3C when |x0| < ζ|xA|, that is when −η > 1/ζ. 
 
The maximum relative coefficient error is δa1u = 3.3×10−15, which occurs at the upper 
bound −η = ζ = 0.345 of post processing recalculation of z1C.  If ζ were any greater than 
0.345, then the transition point −η = ζ would move to the right, and the maximum relative 
coefficient error would increase above 3.3×10−15 as shown by the green dashed curve.  The 
dramatic increase of error  δa1u = |(a1C − a1)/a1|  with −η occurs because coefficient a1 goes 
to 0 at −η = 0.5.  Equation (112) shows this: 

a1 = (2η + 1)x02   ⇒  a1 = 0  when η = −0.5.  
 
This problem affects δa1u only when there is post-processing recalculation as shown below.  
Without post processing, zero-guard processing calculates roots z1C, z2C, and z3C such that 
check coefficients a2C and a1C are exactly equal to the true coefficient values.  Then a2C  = a2 
and a1C = a1, which implies that  δa2u = δa1u = 0. 
 
The remainder of this paper derives the formulas for the zero-guard-induced relative 
coefficient errors δa2u, δa1u, and δa0u as plotted in Figures 31 and 32 above. 

Derivation of Relative Coefficient Errors without Post Processing 
We examine first the case of no post processing.  The Figure 9 cubic-equation algorithm 
calculates solutions z1, z2, and z3, but there is no post-processing recalculation of any of the 
solutions.  The true solution values of the multiplicity 2 cubic equation are 

z1 = xA,      z2 = x0 + ∆z      and      z3 = x0 − ∆z 

where xA > x0 and ∆z is positive real. 
 
The Figure 9 algorithm calculates parameters a2E, a1E, a0E, q, qE, r, rE, R, and RE according to 
Equations (152) to (156) above.  The zero-guard condition |∆z| < |∆z|ZG is equivalent to 
|R| < RE ε.  Under this condition, the algorithm calculates the three cubic-equation solutions 
as 
 z1C = 2s − a2/3      and      z2C = z3C = −s − a2/3    where    s = �−q  and q ≤ 0. (178) 
 
The check coefficient a2C from Equation (2) is 

a2C  =  − (z1C + z2C + z3C)  =  − (2s − a2/3 − s − a2/3 −s − a2/3)  =  a2 

   a2C = a2 .    
 
The check coefficient a1C from Equation (2) is 

a1C  =  z1C(z2C + z3C) + z2Cz3C  =  (2s − a2/3)(−2s − 2a2/3) + (−s − a2/3)2  =  −3s2 + a22/3 

a1C  =  3q + a22/3. 

Equation (153) gives q as q = a1/3 − a22/9 so that  
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   a1C = a1.    
 
Thus, with no post processing and |∆z| < |∆z|ZG, the zero-guard processing in the Figure 9 
algorithm calculates solutions z1C, z2C, and z3C such that the check coefficients a2C and a1C 
are identical to their input coefficient counterparts a2 and a1.  The corresponding relative 
coefficient errors δa2u and δa1u of Equation (82) are therefore both 0. 

    δa2u = δa1u = 0        without post processing    (179) 
 
We can now calculate the relative coefficient error δa0u based on the results a2C = a2 and 
a1C = a1 for the zero-guard condition |∆z| < |∆z|ZG ⇔ |R| < RE ε.  Equations (122) to (124) 
give the input coefficients as 

 a2  =  − (xA + 2x0)                           a1  =  2xAx0 + x02  −  ∆z2                       a0  =  −xA (x02 − ∆z2). 

Equations (2) give the check coefficients as 

a2C  =  − (z1C + z2C + z3C)           a1C  =  z1C(z2C + z3C) + z2Cz3C             a0C  =  −z1Cz2Cz3C .     (180) 
 
Define the quantities δ and δA as 

δ ≡ z2C − x0,         δA ≡ z1C − xA . 

Calculated solutions z2C and z3C are equal (z2C = z3C = −s − a2/3), so they must be real, and 
we may write the three calculated solutions as 

 z1C = xA + δA 

          z2C = z3C = x0 + δ. (181) 
 
The check coefficient a2C is 
 a2C = − (z1C + z2C + z3C) = −(xA + δA  + 2x0 + 2δ), and the input coefficient a2 is 
 a2 = −(xA  + 2x0). 
The equality a2C = a2 therefore implies that δA = −2δ, and 

 z1C = xA − 2δ. (182) 
 
We can now find δ from the equality a1C = a1.  The check coefficient a1C is 

a1C  =  z1C(z2C + z3C) + z2Cz3C  =  (xA − 2δ)(2x0 + 2δ) + (x0 + δ)2. 
It is equal to the input coefficient a1 given by 

a1C  =  a1  =  2xAx0 + x02  −  ∆z2. 

These last two equations combine to produce the following quadratic equation in δ. 

δ2 −
2
3

(xA − x0)δ −
1
3

∆z2 = 0 

Normalize this equation by dividing it through by x02. 
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δu
2 −

2
3

(η − 1)δu −
1
3

∆u2 = 0           where      δu ≡ δ x0⁄     and    ∆u ≡ ∆z x0⁄            (183) 

Of the two δu solutions, we use the one of smaller absolute value.  Use the Numerical 
Recipes solution of Figure 8. 

δu = −sgn(η− 1)
∆u2

|η − 1| + �(η − 1)2 + 3∆u2
                               (184) 

The function sgn(x) is the sign of x, (Equation (133)).  Note that sgn(η − 1) = sgn(x0) 
because η ≡ xA/x0 and xA > x0. 
 
Apply the calculated solutions in Equations (181) and (182) to the formula for check 
coefficient a0C in Equation(180).  Then normalize by x03. 

 a0C  =  −z1Cz2Cz3C  =  −(xA − 2δ)(x0 + δ)2  ⇒   a0C/x03 =  −(η − 2δu)(1 + δu)2 

The corresponding formulas for a0 and a0/x03 are  

 a0  =  −xA (x02 − ∆z2) ⇒   a0/x03 =  −η(1 − ∆u2). 

Use these formulas for a0C/x03 and a0/x03 to find the zero-guard relative coefficient error 
δa0u. 

δa0u ≡ �
a0C − a0

a0
� = �

a0C/x03 − a0/x03

a0/x03
� 

The result is 

δa0u = �
2(η − 1)δu + (η − 4)δu

2 − 2δu
3 + η∆u2

η(1 − ∆u2) �  .                             (185) 

 
The maximum δa0u corresponds to a ∆u ≡ ∆z/x0 equal to the relative zero-guard range 
|∆z/x0|ZG.   
 
Calculate the maximum δa0u versus η for x0 > 0 and x0 < 0 as follows.  If x0 > 0, then η > 1.  If 
x0 < 0, then η < 1.  Calculate quE and ruE with Equations (164) and (165).  For x0 > 0, 
calculate ∆u as the positive real solution of Equation (166).  For x0 < 0, calculate ∆u as the 
absolute value of the negative real solution of Equation (167).  Finally, calculate δu and δa0u 
using Equations (184) and (185). 
 
This δa0u is plotted as the solid red curve in Figures 31 and 32 for those ranges of η where 
there is no post processing.  The corresponding δa2u and δa1u are zero for those ranges of η 
per Equation (179). 

Derivation of Relative Coefficient Errors with Post-Processing Recalculation of z2C and z3C 
We now derive the zero-guard-induced relative coefficient errors δa2u, δa1u, and δa0u when 
the Figure 12 cubic-equation post-processing algorithm recalculates the multiplicity 2 
near-miss solutions z2C and z3C from the Figure 9 cubic-equation algorithm.  For the most 
part, these relative coefficient errors are smaller than the δa0u just derived for the no-post-
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processing case.  The major reason is that zero-guard range is usually smaller when post 
processing recalculates z2C and z3C.  See the comparison of zero-guard ranges in Figure 29 
above.  As in the no-post-processing case, relative coefficient errors δa2u, δa1u, and δa0u are 
to be expressed as functions of η for x0 > 0 and x0 < 0. 
 
To find δa2u, δa1u, and δa0u, we first need expressions for the calculated solutions z1C, z2C, 
and z3C produced by the combination of Figure 9 and Figure 12 algorithms.  We can then 
calculate the corresponding check coefficients a2C, a1C, and a0C and relative coefficient 
errors δa2u, δa1u, and δa0u. 
 
The post-processing algorithm does not change the Figure 9 calculated value z1C, so the 
relevant z1C is that of the zero-guard processing in the Figure 9 algorithm and is given 
above in Equation (178). 

z1C = 2s − a2/3  =  2�−q   − a2/3    where     q = a1/3 − a22/9 

From Equations (122) and (123), 

a2  =  − (xA + 2x0)                a1  =  2xAx0 + x02  −  ∆z2. 

Combine the equations above to obtain the normalized calculated solution, u1C ≡ z1C/x0. 

u1C ≡  z1C/x0 =
1
3
�η + 2 + 2 sgn(x0) �(η− 1)2 + 3∆u2�                       (186) 

 
The relevant values of (η − 1)2 and 3∆u2 in the radicand differ by almost 15 orders of 
magnitude.  Figures 31 and 32 show that post-processing recalculation of z2C and z3C occurs 
for |η| greater than 2.9, so (η − 1)2 is greater than 3.6.  The value ∆u ≡ ∆z/x0 is evaluated as 
the post-processing relative zero-guard range |∆z/x0|ZG, whose value is about 4×10−8 as 
shown by the green curves in Figure 29.  The value of 3∆u2 is thus about 5×10−15. 
 
This great magnitude difference between (η − 1)2 and 3∆u2 means that round-off error will 
swamp the contribution of 3∆u2 to u1C when Equation (186) is evaluated.  The equation 
needs to be modified so that the relative coefficient errors δa2u, δa1u, and δa0u can be 
accurately determined. 
 
Extract (η − 1)2 from the radical in Equation (186) to give  

u1C  =
1
3
�η + 2 + 2 sgn(x0) |η − 1| √1 + 2θ �                                         

where 

θ ≡ 
3∆u2

2(η − 1)2            and    0  <  θ  <<   1.                                             

 
Approximate  √1 + 2θ  as  1 + θ. 

u1C  =
1
3

[η + 2 + 2 sgn(x0) |η − 1| (1 + θ)]                                            



Cubic Equation Analysis – Multiplicity 2 Near Miss 

9/24/2021  Page 132 of 136 

Whether x0 > 0 or x0 < 0, the quantity sgn(x0)| η − 1| is η − 1, and the last two equations 
combine to give 
 u1C = η + δη       where       δη ≡ ∆u2/(η − 1). (187) 

This is the expression we seek.  The contribution of ∆u2 to u1C is obvious, and the relative 
coefficient errors δa2u, δa1u, and δa0u will be easy to calculate accurately. 
 
The Figure 12 post processing uses the simple solution z1C from the Figure 9 algorithm and 
the cubic-equation coefficients a0 and a1 to calculate the remaining solutions z2C and z3C.  
The post processing invokes the Figure 8 quadratic-equation algorithm to calculate z2C and 
z3C as the two solutions of the quadratic equation 

z2 + Bz + C = 0       where     C =
−a0
z1C

      and    B =
C − a1

z1C
 . 

In the situation of interest, the difference z2C − z3C is smaller than the quadratic-equation 
zero-guard range, which implies that  |D| < DE ε.  The quadratic-equation algorithm sets 
determinate D to zero and calculates z2C and z3C as the equal values 

z2C = z3C = −
B
2

=
a0 + a1z1C

2z1C2
 . 

To this equation, apply the expressions    a1  =  2xAx0 + x02  −  ∆z2   and   a0  =  −xA (x02 − ∆z2)  
from Equations (123) and (124).  Then divide through by x0 to obtain the expression for 
the normalized solutions u2C ≡ z2C/x0 and u3C ≡ z3C/x0.  

u2C = u3C =
−η(1 − ∆u2) + (2η + 1 − ∆u2)u1C

2u1C2
 . 

Apply u1C = η + δη from Equation (187) and simplify.  

u2C = u3C =
2η2 + (2η + 1)δη − δη∆u2

2�η2 + 2ηδη + δη2�
  

Drop second-order error terms: −δη∆u2 in the numerator and δη2 inside the denominator 
parentheses. 

u2C = u3C =
2η2 + (2η + 1)δη
2η2(1 + 2δη/η)  

Multiply numerator and denominator by (1 − 2δη/η) and simplify, dropping terms that 
contain δη2 from both the numerator and denominator.  The result for u2C = u3C 
corresponds to u1C in Equation (187). 

u2C = u3C = 1 + δu2C        where         δu2C ≡ −
2η − 1

2η2
δη                           (188) 

 
Equations (187) and (188) are the desired expressions for the normalized calculated 
solutions u1C ≡ z1C/x0, u2C ≡ z2C/x0, and u3C ≡ z3C/x0.  We can now find the corresponding 
formulas for the normalized check coefficients and the relative coefficient errors δa2u, δa1u, 
and δa0u.  
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Normalize the cubic-equation coefficients a2, a1, and a0 in Equations (122) to (124) by the 
appropriate power of x0. 

 a2/x0  =  − (η + 2)            a1/x02  =  2η + 1 − ∆u2           a0/x03   =  −η (1 − ∆u2). (189) 

Do the same for the check coefficients in Equation (180). 

 a2C/x0 = −(u1C + u2C + u3C)     a1C/x02 = u1C(u2C + u3C) + u2Cu3C     a0C/x03  = −u1Cu2Cu3C (190) 

 
We apply Equations (187) to (190) to Equation (82) to find the formulas for the relative 
coefficient errors δa2u, δa1u, and δa0u. 

δa2u = �
a2C/x0 − a2/x0

a2/x0
� ,      δa1u = �

a1C/x02 − a1/x02

a1/x02
� ,          δa0u = �

a0C/x03 − a0/x03

a0/x03
�       

The results are 

δa2u = �
η − 1

η2(η + 2)�∆u2,         δa1u = �
η2 − 1

η2(2η + 1)�∆u2,           δa0u = �
η2 − 1

η2
�∆u2               

 
In deriving these formulas, we dropped all second-order error terms like δη2, δηδu2C, and 
δu2C2 .   
 
Evaluate these formulas for δa2u, δa1u, and δa0u by setting ∆u equal to the relative zero-
guard range |∆z/x0|ZG given by Equations (176), (177), and (173) for post-processing 
recalculation of z2 and z3.  The resulting values of δa2u, δa1u, and δa0u are plotted as the blue, 
green, and red curves on the right-hand portions of Figures 31 and 32 where |η| > 1/ζ ≈ 2.9. 

Derivation of Relative Coefficient Errors with Post-Processing Recalculation of z1C 
This final derivation calculates δa2u, δa1u, and δa0u when |xA| < |x0| and post processing 
recalculates the simple solution z1C.  Our analysis convention that xA > x0 then requires that  

x0 < 0          and       |η| = |xA/x0| < 1. 
 
The Figure 12 cubic-equation post-processing algorithm uses solutions z2C and z3C from the 
Figure 9 cubic-equation algorithm to recalculate z1C as    

z1C =
−a0

z2Cz3C
 .                                                                     (191) 

This z1C formula implies that the input coefficient a0 is identical to the corresponding check 
coefficient a0C :  a0 = − z1C z2C z3C = a0C.  The conclusion that a0 = a0C holds regardless of how 
z2C and z3C are calculated or whether zero-guard processing is involved.  Because a0 = a0C, 
the relative coefficient error δa0u is zero.  

δa0u ≡ �
a0C − a0

a0
� = 0                                                       (192) 
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The recalculation of  z1C does not affect solutions z2C and z3C from the Figure 9 algorithm.  
We therefore use Equations (181), (183), and (184) from the no-post-processing case to 
calculate z2C and z3C. 

 z2C = z3C = x0 + δ = x0(1 + δu) (193) 

This equation for z2C and z3C and Equation (191) for z1C enable us to now calculate the 
check coefficients a2C and a1C and the relative coefficient errors δa2u and δa1u.   
 
Equation (2) gives the check coefficient a2C as a2C = − (z1C + z2C + z3C), so with the 
equations above and  a0/x03  from Equation (189) we have   

a2C =
a0

z2Cz3C
− (z2C + z3C) =

a0 − 2z2C3

z2C2
                 

a2C/x0 =
−η(1 − ∆u2) − 2(1 + δu)3

(1 + δu)2  .                 

 
From this expression, Equation (82) for δa2u, and Equation (189) for a2/x0, the desired 
expression for relative coefficient error δa2u becomes 

δa2u = �
2(η − 1)δu + (η − 4)δu

2 − 2δu
3 + η∆u2

(η + 2)(1 + δu)2 � .                                  (194) 

 
 
We derive the expression for δa1u in similar manner.   Equation (2) gives the check 
coefficient a1C as a1C = z1Cz2C + z1Cz3C + z2Cz3C = 2z1Cz2C + z2C2 .  Apply Equations (191) for 
z1C, (193) for z2C = z3C, (189) for a0/x03 and a1/x02, and (82) for δa1u.    

a1C = 2
−a0

z2Cz3C
z2C + z2C2 =

−2a0 + z2C3

z2C
.                 

a1C/x02 =
2η(1 − ∆u2) + (1 + δu)3

1 + δu
 .                 

δa1u = �
−2(η − 1)δu + 3δu

2 + δu
3 + (1 − 2η + δu)∆u2

(2η + 1 − ∆u2)(1 + δu) � .                                  (195) 

 
Recall that, in this case, post processing does not affect solutions z2C and z3C, the calculated 
multiplicity 2 near-miss solutions.  Therefore, ∆u is set equal to the relative zero-guard 
range |∆z/x0|ZG for the no-post-processing case.  Also, x0 < 0 and |η| < 1. 
 
Evaluate Equations (194) and (195) for δa2u and δa1u versus η as follows.  Calculate quE and 
ruE with Equations (164) and (165).  Calculate ∆u as the absolute value of the negative real 
solution of Equation (167).  Finally, calculate δu, δa2u, and δa1u using Equations (184), 
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(194), and (195) respectively.  The resulting values of δa2u and δa1u are plotted as the blue 
and green curves in Figure 32 for −η values satisfying |−η| < ζ = 0.345.  The value of δa0u 
(red curve) for that range of η is zero, Equation (192).  Equation (195) also provides the 
δa1u values for the dashed green curve at −η > ζ = 0.345. 
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