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I. INTRODUCTION

Analytic techniques to mitigate computer round-off error are applied to algorithms for
solving cubic and quartic equations. A computer, operating in double precision, usually
produces a calculated-solution relative error on the order of 10716 or less, but this small
error value can increase by many orders of magnitude for certain conditions:
e multiplicity condition - Two or more equation solutions equal the same real value.
e magnitude condition - The absolute values (or magnitudes) of two equation
solutions differ from each other by several orders of magnitude.
e symmetry condition - A quartic equation has a quartic polynomial P(Z) that is
symmetric about some argument value Zc: P(Zc +Z) = P(Zc - 7).
Examples of these conditions in Table I are described below. Our design eliminates this
error magnification by applying error mitigation to the Practical Algorithm for Solving the
Cubic Equation and Modified Euler Algorithm for Solving the Quartic Equation. These two
algorithms are provided below (Figures 1, 2) and are described in detail elsewhere on this
website: https://quarticequations.com.

Calculated-solution round-off error is caused by the computer’s limited precision for real-
number storage. The mitigation design presented here assumes standard double-precision
computation for floating point numbers (binary64) [1], [2]. Of the number’s 64 bits
storage, one bit is the sign bit, 11 bits store the binary exponent, and 52 bits store the
fraction. The mantissa storage of a non-zero real number consists of an implicit 1 followed
by the binary point and 52 binary places. The maximum storage error is an incorrect least-
significant bit. Thus, the maximum relative storage error for this format is

€=272~222x10716,

The calculated solutions of most cubic and quartic equations have relative errors, if any, on
the order of € or less.

Solution error can be much greater for equations exhibiting the multiplicity, magnitude, or
similarity conditions as demonstrated in the five example equations of Table I below.
Examples 1 and 2 demonstrate the multiplicity condition. The cubic equation of Example 1
has two equal solutions (multiplicity 2) with relative solution error on the order of 10 8.
The quartic equation of Example 2 has three equal solutions (multiplicity 3) and relative
error on the order of 10 5. Example 3 demonstrates the symmetry condition. The quartic
polynomial, and therefore, the four solutions 7, 4.2, —0.2 and -3, are symmetrical about the
value Z = Zc = 2. The solutions stay the same in Example 4 except that the third solution is
changed very slightly from —0.2 to —0.2000001. Thus Example 4 is not symmetric, but it is
a symmetry near miss. Example 3 and 4 relative error is on the order of 10 7. Example 5 is
an extreme example of the magnitude condition: the absolute values of the quartic
equation’s four solutions differ from each the other by many orders of magnitude. Round-
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off error swamps the two smallest-magnitude solutions so that their calculated values are
worthless.

The mitigation design addresses all of these conditions of round-off error magnification,
and calculates solutions for the tabulated equations with relative error less than 10714,
With very rare exceptions for the quartic equation, any true real solution of a cubic or
quartic equation is calculated as a real value, not a complex value with a small imaginary
component.

Table I. Example Equations with Magnified Solution Error

1. The cubic equation z3 — 522 + 8 z,— 4 = 0 has true solutions 2, 2, and 1, but the
calculated solutions are 1 and 2 £i11.676380642679 x 10 8.

2. The quartic equation Zi — 4.2 Z3 + 6.6 Z2— 4.6 Z,+ 1.2 = 0 has true solutions
1.2, 1, 1, 1, but the calculated solutions are
1.2,0.999991545140, and 1.000004227430 +i 0.000007322698.

3. The quartic equation Zj — 8 Z3 — 5.84Z2 + 87.36 Z,+ 17.64 = 0 has true
solutions 7, 4.2, —0.2 and —3, but the calculated solutions are
7.000000042147, 4.199999957853,-0.200000042147, and —2.999999957853.

4. The quartic equation Z} —7.9999999 Z3 — 5.84000082 Z2 + 87.35999958 Z,+
17.64000882 = 0 has true solutions 7, 4.2, —-0.2000001, and -3, but the
calculated solutions are 7.000000017147, 4.199999982853, —0.200000117147,
and —2.999999982853.

5. The quartic equation
Zt—6.99970002Z3 — 2.099860005965x10 3Z2 + 4.20000104993x10 “11 Z _—
21x10725=0
has true solutions
7, —3x107%, 2x1078, and 5x10 15
but the calculated solutions are
7, —3.00019431496x10 * and
1.97157508097x10 8 £ i2.41435601527x10 ~°.
Calculation results in this table are produced by coding the cubic- and quartic-equation

algorithms (Figures 1, 2) in Excel 2016 Visual Basic for Applications (VBA) using double
precision for floating-point numbers.

The mitigation design also addresses cubic and quartic equations with multiplicity near
miss (two solutions are not equal, but are nearly equal).

Finally, the mitigation design addresses the special cases of cubic and quartic equation for

which the constant coefficient is zero, which implies that at least one solution is zero. The
algorithms in Figures 1 and 2 may return the zero solution as a small round-off error. Such
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a result for the resolvent cubic equation of a symmetric quartic equation produces
magnified round-off error in the quartic-equation calculated solutions.

Summary

Our presentation of the mitigation design begins in Section Il with a review of the Practical
Algorithm for Solving the Cubic Equation and the Modified Euler Algorithm for Solving the
Quartic Equation.

Section III describes cubic- and quartic-equation special cases that are incorporated into
the round-off-error mitigation design. Solutions for these cases can be calculated more
easily than by using the full cubic- and quartic-equation algorithms, and round-off error is
also reduced. The set of special cases provides the preliminary logic structure in the form
of algorithm flowcharts for the round-off error mitigation design. One of the special cases
requires the solutions of a quadratic equation, so this section also introduces a quadratic-
equation algorithm based on recommendations in Numerical Recipes (3, §5.6] by Press,
et al. Unlike the quadratic formula, this quadratic-equation algorithm mitigates against
round-off error when the absolute values of the two solutions differ by many orders of
magnitude (magnitude condition).

Section IV addresses the multiplicity condition (two or more equation solutions equal the
same real value). It shows how multiplicity magnifies solution round-off error, and then it
eliminates the problem by introducing new calculations into the Section III algorithms. The
algorithms for solving quadratic, cubic, and quartic equations take their final form.
Demonstrations using Examples 1 and 2 from Table [ above show how the mitigation
calculations work. The mitigation technique for multiplicity also addresses the quartic-
equation symmetry condition as demonstrated using Table I, Example 3.

The presentation also explains why the modified Euler algorithm was chosen from among
the available quartic-equation algorithms for the round-off error mitigation design. The
modified Euler algorithm reflects the conditions of quartic equation multiplicity and
symmetry as a corresponding condition in the algorithm’s resolvent cubic equation

(Figure 11) and its three solutions. Euler’s application of all three resolvent-cubic-equation
solutions greatly simplifies the mitigation design for quartic equations.

Sections V and VI describe post-processing algorithms to address round-off-error
magnification for the magnitude condition: cubic or quartic equations with at least two
solutions whose absolute values differ by several orders of magnitude. The algorithms of
Section IV provide good accuracy for the larger-magnitude solutions, but round-off error
can swamp the smaller-magnitude solutions. To correct this situation, post processing
applies the accurately-calculated, large-magnitude solution(s) to the cubic- or quartic-
equation coefficients to accurately extract the small-magnitude solution(s).

The cubic-equation post processing, described in Section V, addresses not only the cubic-

equation magnitude condition, but also quartic-equation symmetry near-miss. The reason
is that such a quartic equation has a resolvent cubic equation with the magnitude
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condition. Section V works through the Table I, Example 4 quartic equation to
demonstrate.

Section VI describes the quartic-equation post-processing algorithm, which it demonstrates
using the Table [, Example 5 quartic equation. For its operation, the algorithm requires a
generic value-ordering routine, which is also provided. Quartic-equation post processing is
the final piece of the error mitigation design.

All calculations of the error-mitigation design for solving quadratic, cubic, and quartic
equations are summarized in the figures listed below. The figures are found in Sections IV,
V, and VI.

Table II. Calculations with Round-Off Error Mitigation for Solving Quadratic, Cubic, and
Quartic Equations

Section # | Figure # | Page # Title
IV 8 21 | Final Calculation Algorithm for Solving the Quadratic Equation
IV 9 22 | Final Calculation Algorithm for Solving the Cubic Equation
\% 12 47 | Cubic Equation Post Processing Algorithm
IV 10 28 | Final Calculation Algorithm for Solving the Quartic Equation
VI 13 57 | Quartic Equation Post Processing Algorithm
VI 14 59 | Value-Ordering Routine

Sections VII through X provide an error analysis of the multiplicity and multiplicity near-
miss conditions to show that the mitigation design provides excellent solution accuracy.

Unless noted otherwise, the radical sign \ denotes the principal square root. The principal
square root of a positive real number is the positive square root. The principal square root
of a negative real number is the positive imaginary square root. If z is complex with
modulus r and argument ¢ such that —n < ¢ <, then z = rei® and the principal square root

of zis vz = r el/2,
The following coding recommendations apply whenever calculation error is a concern.

e To calculate an integer power of a real number, use repeated multiplication rather
than exponentiation. For example, code X3 as X*X*X rather than X*3.

e To calculate an odd half power of a real number, use the square-root function rather
than exponentiation. For example, code X5/Z as X*X*SQRT(X) rather than X" (5/2).

[ thank my correspondents Demetrius Papademetriou and Vadym Koliada, whose interest
in the round-off error problem inspired my effort here.

See the website directory at https://quarticequations.com.

Contact the author at david@quarticequations.com.
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II. REVIEW OF CUBIC- AND QUARTIC-EQUATION ALGORITHMS

This section reviews the starting algorithms prior to applying round-off error mitigation.

Review of the Cubic-Equation Algorithm
Figure 1 below shows the practical cubic-equation algorithm for solving the cubic equation

zi+azzi+aiz,+ao=0, n=1,2,3. (1D

Solution z1 is the greatest real solution. The other two solutions, z2 = x2 + iy2 and

73 = X3 — 1y2, are either real (y2 = 0) or a complex conjugate pair (x3 = x2). Given the
equations three real coefficients az, a1, and ao, the algorithm calculates outputs z1, x2, x3, and
y2 (y2 > 0) so that z1, z2 = x2 + iy2, and z3 = x3 — iy2 satisfy

z8+azz?+aiz+ao = (z—2z1) (z—2z2) (z—2z3) forallz.

Valid solutions z1, z2 = x2 + iy2, and z3 = x3 — iy2 reproduce the input coefficients according
to these check equations:

az = —(z1+2z2+ z3) a1 = z1z2 + z1z3 + 7223 a0 = —Z1Z2Z3 (2)

or

az = —(z1+ x2 + x3) a1 = z1(X2+x3) + X2x3 + y3 a0 = —z1(x2x3+y3)  (3)

Figure 1 Practical Algorithm for Solving the Cubic Equation

Given: Real coefficients az, a1, and ao,

Find: 71, z2=Xz2+iy2, and zs=xs—iy2 such that z3 +azz? + a1z + a0 = (z—71) (z—22) (z—2z3) forall z.

2 -3 3
Calculate g and r: q=a__a_2 p=2222""% 2
3 9 6 27
Case: 1: 12+ @3>0 < Only One Real Solution Case2: r2+q*<0 < Three Real Solutions
(Numerical Recipes) (Viete)

A=(r|+ [r2 +—q3)1/3 o {0 if =0

Cos*(Max{Min[r/(-q)*/?,1],-1}) if q<0
3 {A—q/A if r>0

b q/A-A if r<0 Note: 0<0<x

V3, g $1=0/3 d2=¢1-2n/3  ¢3=¢1+27/3
tox = tgx = —t;/2 V2 = 7(A+K) t; = 2 ./—q cos {1
ty =ty +iy,, tz3 =ty — iy, t2=tx= 2,/—q cos 2 y2=0

ts=tx= 2.,/—q cos¢s

Note: t1 2 t2 2 t3 = 71> 7Z2=X2 > Z3=X3

z1=1t1—az/3, X2 = tax —az/3 X3 = tax—az/3 Note: zz = x2 +1iy2, z3=Xx3-1y2
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For cubic equations with one real solution, Case 1, the algorithm modifies Cardano’s
formula [4, Chapter XI] as suggested by Press, et al. in Numerical Recipes |3, §5.6]. The
algorithm applies Viéte’s trigonometric method [5] for cubic equations with three real
solutions, Case 2.

The algorithm converts the general cubic equation (1) to an equivalent depressed cubic
equation with no quadratic term:

t3+3qt,-2r=0, n=1,2,3. (4)

The real values q and r are calculated from coefficients az, a1, and ao as

2 3
a; aj a;a, —3ap aj
= — = — [ — 5
1379 r 6 27 ®)
The depressed solutions tn in (4) are related to the general solutions zn by
th =2zn+ a2/3 = Zn =tn—az/3, n=1,2, 3. (6)

In Figure 1, Case 2 (Three Real Solutions) the last entry is
t1>2te>2t = 712> Z2=X2 > Z3=X3. (7)

These inequalities are important to the mitigation design.

The algorithm above is expanded somewhat compared to the corresponding algorithm in
this website’s cubic-equation document https://quarticequations.com/Cubic.pdf. In the
formula for 0 in Case 2, that document gives the argument of Cos™* as r/(—q)3/?. That
argument is theoretically bound to the range [-1, 1] by the definition of Case 2: r2 + g3 < 0.
In practice, however, round-off error may take the calculated value of r/(—q)3/? just outside
this range and cause a run-time error in the Cos™1 calculation. The Figure 1 algorithm
avoids this possibility by clamping the argument to the range [-1, 1] explicitly with the
expanded expression Max{Min[r/(-q)3/2,1],-1}.

Also, the Figure 1 algorithm explicitly calculates the three solutions ti, t2, and t3 of the
depressed cubic equation (4). These depressed solutions are key to understanding
solution error due to computer round off.

Review of the Modified Euler Quartic-Equation Algorithm

Figure 2 below shows the modified Euler quartic-equation algorithm. Inputs are four real
coefficients As, A2, A1, and Ao, and the outputs are the four values Z1, Z2, Z3 and Z4 such that

74 + AsZ3 + A2Z2 + AiZ + Ao = (Z-71) (Z-72) (Z-73) (Z—Z4) for all Z.
The outputs are thus the four solutions of the general quartic equation

I+ AZ3 + A2Z2 + A1Z,+A0=0, n=1,2,3,4. (8)
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Figure 2 Modified Euler Algorithm for Solving the Quartic Equation

Given: Real coefficients Az, Az, A1, and Ao,

Find: Zi,7Z2,Z3 and Zs such that Z* + AsZ3 + A2Z2 + A1Z + Ao = (Z-71) (Z-712) (Z-Z73) (Z-Z4) for all Z.
Calculation: C =A3/4, b2=A>-6C2, b1=A1—-2A2C+ 8C3, bo = Ao — A1C + A2C2 - 3C*

Use the cubic-equation algorithm to find the three solutions z1, zz, and z3 of the resolvent cubic
equation:
z]§+ (b2/2) z§+ [(b% — 4bo)/16] zx — b?/ 64 = 0.

Of the three cubic-equation solutions, z1 is the greatest real solution and z1 > 0. Solutions zz = x2 + iy2
and z3 = x3 + iys are real (zz = X2, z3 = X3, y2 = y3 = 0), or they form a complex conjugate pair
(z2 =x2 + iy2, 23 = X2 —iy2, X2 = X3, y2 =—-y3 > 0). In either case,

7273 = X2x3+y5 > 0 and x2x3> 0.

The calculation of z1, zz, and z3 assures that if z; and z3 are real, then z3 = x3 <72 = X2 < z1. To assure
that round-off error does not cause a violation of z1 > 0 and/or x2x3 > 0, insert the following
calculation logic:

| Ifz1 <0, thenzi = 0. If x2x3 < 0, then (If x2 > —x3, then x3 =0; else x2 =0.) |

> =1if b1 >0, X =-1 otherwise.

D1 =X, + X3 — 2X/X,X3 + y? D3 =X, + X3 + 2X/X,X5 + y?

Ri = \/|D1| R3 = |D3|

Case D12 0: Case D1 <0: Case D32 0: Case D3 < 0:
Tix=+2z, + R1 Tix=Tax =21 Tsx = —vZ; + R3 Tsx = Tax = —/z1
Tax=+27, — R1 Yi=R1 Tax=—+/z; - R3 Y3 =Rs

Y1=0 Ys=0
X1= Tix-C X2 = T2x—-C X3= Tsx—-C Xa= Tax—-C
Note: T1 = Tix+iYy, T2 =Tax—1iY1 T3 =Tsx +1iYs, T4 =Tax—1Y3
Z1 = T1 —C = X1 +1iYy, Z =T, -C =
Z3 = T3 —C = X3 +1iY3, Zs = T4 —C =

The algorithm begins by calculating C = As/4, bz, b1, and bo. The last three of these values
are coefficients of the equivalent depressed quartic equation with no cubic term:

Ta +b2TZ +bi1Tun+bo = 0 n=1,2,3,4.
The solutions Zn of (8) are related to the solutions Tn of (9) by
Th=7Zn+C = Zn=Tn—C, n=1,2,3,4.

The coefficients az, a1, and ao of the resolvent cubic equation are calculated from the

depressed quartic equation coefficients bn as:

9/24/2021
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a1

a0

(b2 — 4bo) /16

—b?/64.
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(11)
(12)
(13)

The cubic-equation algorithm calculates the solutions z1, z2, and z3 of the resolvent cubic
equation, and from them the quartic-equation algorithm calculates the depressed quartic-
equation solutions Tn = Tnx + 1 Yn and the general solutions Zn = Xn + i Yn where

Xn = TnX— C

The depressed solutions Tx are calculated as two pairs: T1, T2 and T3, T4. Solutions T1 and

T2 are either both real:

Ti=Tix, Ta=Tx Yi=Y2=0

or they form a complex conjugate pair:

Tix=Tx Yz2=-Y1>0,
X1 =Xz =Tix - C,

T1

= 7Z1=X1=Twix —C,

Tix +1Ys,

Z1= X1+1iYy,

T2= Tix—iY1
Z:= X1—-1Y1

7, =X2=Tx —C,

=

In similar fashion, T3, T4 are either both real, or they form a complex conjugate pair. The
pair Z3, Z4 are both real or a complex conjugate pair accordingly.

Valid solutions Z1, Z2, Z3 and Z4 of the quartic equation reproduce the input coefficients in
compliance with the following check equations:

A3 = —(Za+7Z2+73+7Z4)

A2 = 7172+ 7173+ 7174+ 7273+ 1274+ 713724
A1 = —(Z1Z22Z3+7Z1Z2Z4+ 717374+ 727374)

Ao = 717227374.

Az = —(X1+X2+X3+X4)

OR

Az = XiXo+ Y7+ (X14+X2) (X3+X4) +X3X4+YZ
A1 = —[(X1X2+Y?) (X3+X4) + (X3X4+YE) (X14+X2)]

Ao = (X1X2+Y?) (X3Xa+Y2).

(14)
(15)
(16)
(17)

(18)
(19)
(20)
(21)

Figure 2 lists some important inequality relationships among solutions z1, z2, and z3 of the
resolvent cubic equation. When all three solutions are real, the cubic-equation algorithm
assures that the calculated solutions obey z3 = x3 <72 = x2 <z1. To assure that round-off
error does not cause a violation of z1 > 0 and/or x2x3 > 0, the algorithm inserts the

following calculation logic:

9/24/2021
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If z1 < 0, then z1 = 0.

Ifx2x3 < 0, then
if x2>—x3,thenxz3 =0
else x2 = 0.

This last logic is omitted in the more-compact version of the algorithm in Practical
Algorithms for Solving the Quartic Equation, https://quarticequations.com/Quartic.pdf.

Another addition in the Figure 2 algorithm is the express calculation of the real and
imaginary parts of solutions Tn of the depressed quartic equation (9).
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III. DEFINITIONS OF THE SPECIAL CASES

This section describes cubic- and quartic-equation special cases, Figure 3, that are
incorporated into the round-off-error mitigation design. Solutions for these cases can be
calculated more easily than by using the full cubic- and quartic-equation algorithms, and
round-off error is also reduced. The set of special cases provides the preliminary logic
structure for the round-off error mitigation design.

Figure 3 Cubic- and Quartic-Equation Special Cases

Cubic-Equation Special Cases
Case # | Case Definition Solutions zn of the General Cubic Equation
z3+azzi+aiz,+ao=0
1 30=0 0 and the two solutions of z2 + azz,+a1 =0
At least one solution z. is zero. n T EzET AL =
Solutions tn of the Depressed Cubic Equation
t3+3qt,-2r=0
q=r= 0
2 All three solutions zn equal the same real value | ti=t2=t3=0
(multiplicity 3 condition).
R=r2+q3=0,r=0 @) t1=2,/—q, t=tz3= —,/—q ifr>0
3 Two of the solutions zn equal the same real .
value (multiplicity 2 condition). (b) i=t2= |/—q, ts=-2\/—q ifr<o
r=0,q=0 (@) t1=0, t2 = —t3 =1,/3q ifqg>0
4 (a) The three zn have equal real parts if q > 0. )
(b) Three real z, are evenly distributed if q < 0. (b) ti=y-3q, tz =0, ts=—/-3q, ifq<0
Quartic-Equation Special Case
Ao=0 Solution Z1 = 0. Solutions Z2, Z3, and Z4 are the
5 solutions z1, 2, and z3 respectively of the cubic
equation z3 + AzzZ + Azz,+ A1 = 0.
bo=0 Depressed solution T1 = 0. Solutions Tz, T3,
and T4 are the solutions z1, Z2, and z3
6 respectively of the cubic equation
z3 + baz, + b1 =0.

Each special case corresponds to some parameter having a value of zero. The most obvious
cases are cubic, quartic, and depressed equations whose constant coefficient is zero.

Cases1,5and 6: ao=0,Ao=0,andbo=0
In a cubic equation with Case 1 (a0 = 0) the left side of the cubic equation factors:

z3tazzi+aizytao=z3+azz2+aiz, = (z2+azz,+ai)z, =0. (a0=0)
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One solution is 0, and the other two are solutions of the quadratic equation

z2 + a2z, + a1 = 0. When the quadratic-equation solutions are real, we avoid the quadratic
formula because it unnecessarily introduces round-off error into the solution of smaller
magnitude. Instead, our design uses a quadratic-equation algorithm, described shortly,
based on Numerical Recipes [3, §5.6] by Press, et al.

The Case 5 quartic equation (Ao = 0) has solution Z1 equal to 0, and solutions Z2, Z3, and Z4
are the solutions z1, z2, and z3 respectively of the cubic equation z3 + A3z2 + A2z, + A1 = 0.

The Case 6 quartic equation (bo = 0) has depressed solution T1 equal to 0, and depressed
solutions T2, T3, and T4 are the solutions z1, z2, and z3 respectively of the cubic equation
z3+ b2z, + b1 =0.

Case2: q=r=0 < all three solutions equal the same real value

If g =r = 0, then the depressed cubic equation (4) reduces to t3 = 0. Then Equation (6)
gives

ti=t2=t3=0 and zi=z2=z3=-az/3 (q=r=0) (22)

Case3: R=1r2+g¢3=0, r#0 < two solutions equal the same real value

This case implies that q < 0, r2 = —q3 = (—q)3, and |r/(—q)3/2| = 1. The sign of r/(—q)3/2 is
the same as the sign of r. If r > 0, then r/(—q)3/2 = 1, and the Figure 1 cubic-equation
algorithm, Case 2, shows that 6 = Cos™(1) =0, ¢1 =0, ¢p2 =-2n/3, ¢3 = 2n/3, and

ti=2,/—q and t2=t3 =—/—q (R=r2+qg®=0,r>0). (23)

Ifr <0, thenr/(—q)3/2 = -1, and the calculation becomes 6 = Cos™1(-1) =&, ¢p1 = n/3,
o2 =-n/3, ¢3 =m, and

ti=t2=,/—q and t3 =-2,/—q (R=r2+q¢3=0,r<0). (24)

Whether r is positive or negative, all three solutions are real, and two of them equal the
same real value.

Case4: r=0, q#0
Ifr = 0, then the depressed cubic equation (4) reduces to t3 + 3qt, = (t2 +3q) t, = 0. The
solutions for tn are 0 and *.,/—3q.

t1=0, tz2=14/3q, ts3 =-i,/3q (r=0,q>0) (25)
t1=.-3q, tz2 = 0, t3= —/-3q, (r=0,g9g<0) (26)
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Preliminary Logic Structure for the Round-Off Error Mitigation Design

The preliminary logic structure for the mitigation design combines the Numerical Recipes
quadratic-equation method [3, §5.6], the Figure 1 cubic-equation algorithm, and the Figure
2 quartic-equation algorithm with the Figure 3 special cases.

Quadratic-Equation Algorithm

We start with the quadratic-equation algorithm, Figure 4, which is needed by the cubic-
equation algorithm for Special Case 1 (a0 = 0) and by post processing for both cubic and
quartic equations. The two solutions Z1 = X1 + 1Y and Z2 = Xz — iY of the quadratic equation
Z2 + BZ, + C = 0 are calculated so that Z1 is the greater of two real solutions or has the
positive imaginary part when solutions are a complex conjugate pair. This convention
simplifies the calculation logic in the cubic- and quartic-equation algorithms. The quadratic
equation has its own special case when the constant coefficient C is 0. Then solution Z1 =
X1 is the greater of the two solutions, 0 and —B.

Figure 4 Preliminary Calculation Logic for Solving the Quadratic Equation

Inputs:  Real coefficients B and C of the quadratic equation Z2 + BZ, + C=0

Outputs: X, X,,YsothatZ, =X, +iY and Z, = X, —iY imply that Z2 +BZ+ C = (Z-Z,)(Z-Z,) for
all Z. Thus, Z1 and Z: are the two solutions of the quadratic equation. By convention,
solution Z1 is the greater of two real solutions or has the positive imaginary part when
solutions are a complex conjugate pair.

D =B2_4C Nume"rical
Recipes

Y=0
Q =(|B| +vD)/2
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If C # 0, then the algorithm calculates the discriminate D = B2 — 4C. The quadratic formula

is used only for D < 0.
QUADRATIC FORMULA

Z,=2(-B+ VD) Z,=>(-B-vD), D=B2-4C (27)

If D > 0, the formula is avoided because it unnecessarily introduces round-off error into the
solution of smaller magnitude. Let Xa and Xs be the solutions of greater and smaller
magnitude respectively. Then.

Xal=Q=Z(B|+ VD) >  [Xs|=5|[B|-VD| (28)

If B2 >> [4C| > 0, then VD = VB2 - 4C =~ IB|. The calculated difference |B| — vD and
resulting Xs become less accurate as |4C| / B2 decreases.

The algorithm’s Numerical Recipes approach for D > 0 avoids this problem by using the
relationships B = —(Z1 + Z2) = —(X1 + X2) = —(Xa + Xg) and C = Z1Z2 = X1 X2 = XaXs. If
B < 0, then

X1=Xa= >(-B+ VD) =-(B|+ VD) = Q andXe=Xs=C/Xa= C/Q (B<0). (29)
Otherwise,

X2=Xa= 2(-B-vD) =-2(B|+ VD) =—Q and X1 =Xs = C/Xa=-C/Q (B=0). (30)

Cubic-Equation and Quartic-Equation Algorithms

Figures 5 and 6 show the preliminary logic structure for the cubic-equation and quartic-
equation algorithms. Figure 5 combines the Figure 1 cubic-equation algorithm with Figure
3 special cases 1 to 4. Figure 6 combines the Figure 2 quartic-equation algorithm with
special cases 5 and 6.

Cubic-Equation Special Case 1 (ao = 0), shown in the Figure 5 dotted yellow box, requires
some extra logic. One solution is zero and the other two are the solutions Z1 = X1 + iYand
Z2 = X2 —iY of the quadratic equation Z2 + az Z,+ a1 = 0. The quadradic-equation algorithm
assures that X1 > X2. If the quadratic-equation solutions are complex conjugates, then the
cubic-equation solutions are assigned z1 = 0, z2 = Z1, and z3 = Z2. Otherwise, z1, Z2, and z3
are all real, and the extra logic assigns their values to comply with the convention:

Z1 2 Z2=X2 2 Z3=X3.
The following two sections add error-mitigation calculations to the quadratic-, cubic-, and

quartic-equation algorithms of Figures 4, 5, and 6. However, the overall logic structure of
the algorithms remains unchanged.
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Figure 5 Preliminary Calculation Logic for Solving the Cubic Equation

Inputs: Real coefficients a,, a,, and a, of the cubic equation z> +a, 7% +a, za+a, = 0
Outputs: z,, X, X;, ¥, so that z1, z,=x,+ ly,, z;=x,— iy, are its three solutions.

SPECIAL CASES
1. a0 = 0 (at least one solution equals 0)
2.q =r = 0 (three equal real solutions)
3.R=r1r?2+ q3 =0, r#0 (two equal real solutions)
4.r =0, q# 0 (solutions are evenly distributed)

dz, di, Ao

q=2a,/3-2a,%/9, r=(a,a, - 3a0)/6 -a,3/27, R= r’ + q3 Quadratic Equation Algorithm, Figure 4
Inputs: B=az C=a1
Outputs: Xi, X2, Y

y2=0,
Z1 =X2=X3=-az/3

False
I I I
y,=tx=0 y,=Ss
t1=s’t3x=_S t1=t2x=t3X:0
¢ | | Viete
1/3
A=(Ir/+VR) 0 if q=0
A-q/A if r>0i ~ |Cos™(Max{Min[r/(-q)*/2,1],-1}) if q<0

. ty = ) .
Numerical | {q/A—A if r<O0: 0, =03 ¢,=¢,—21/3  ¢,=¢,+2n/3

Recipes 2
tyo = tay = —t \/- v
x2 = U3x 1/ t, =2+/—qcos¢d, t, =2+/—qcosg,
y2 = A ty, =24/—qcos¢;  y,=0

| ]
]
z,=ti—az/3, Xx,=tux—az/3, xX;=tx—az/3

/ 2y, Xy X3, ¥, /
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Figure 6 Preliminary Calculation Logic for Solving the Quartic Equation

Inputs: Real coefficients Az, Az, A1, and Ao of the quartic equation Z + A;Z3 + A,Z2 + AZ, + Ay =0
Outputs: X, X,,Y,, X;, X,, Y, so that Z, =X, +iY,, Z,=X,—iY,, Z,;=X,+iY,, Z,=X,—~iY, are its four solutions.

/ As, Az, A1, Ao /

Fal True
alse A, =
=A;/4 Special Case 5: Ao =0
X1=Y1=0 .

— A _6C At least one solution

2 2
equals 0.
Cubic-Equation Algorithm, Figure 5
2 4

0o=A;—AC+A,LC -3C Inputs: a,=A; a,=A, a,=A,

Outputs: X,=1z, X;=X,, X, =X, Y, =Yy,

-
C 1
1
1
b [
1
b, = A, —2A,C +8C’ :
1
b )
1
1
1
1
1
1
1
1

True

a,=b,/2, Special Case 6: b, =0
a, = (b3 —4b,)/16, At least one depressed
5 solution equals 0.
aO = - bl/ 64
T,=Y,=0

Cubic-Equation Algorithm, Figure 9

Inputs:

a,=0, a,=b,, a;=b,
Outputs:
To=2, Tg=%, Ty=X%; Y;=Y,
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Figure 6 Preliminary Calculation Logic for Solving the Quartic Equation (Page 2)

Solve Resolvent Special Case 6: B
Cubic Equation bo=10

Outputs:

Inputs: a, a;a,

Z,Xp X3 Y,

Cubic-Equation Algorithm, Figure 5

If z,<0 Thenz, =0.

If x

If x, >-x; Then x,=0; Else x,=0.

,X; <0 Then

Ifb, >0,thenX=1; ElseZ=-1

d=xx;+y,y,

Szl=\/Z_1

T

D =x, +x, - 23Vd

False True

Il
o

TXZ = Sz1—SD

D =x, +x, + 22Vd

szm

Y, =so Y;=0 Yy =sp
Ty =8u+sp Tx1 = s21 TX3 =S, +Sp Ts=-sa
Txz = Tx1 Tx4— —S,1—Sp Tx4 = Tx3
| |
X, =Ty -C X,=T,,-C X;=Ty—-C X,=Ty,-C

[
/ X, X,, Yy, X5 X, Y3/
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IV. ALGORITHMS WITH MITIGATION FOR MULTIPLICITY CONDITION

This section addresses the multiplicity condition (two or more equation solutions equal the
same real value). It shows how multiplicity magnifies solution round-off error, and then it
eliminates the problem by introducing new calculations into the Section III algorithms. The
algorithms for solving quadratic, cubic, and quartic equations take their final form.
Demonstrations using Examples 1 and 2 from Table [ above show how the mitigation
calculations work. The mitigation technique for multiplicity also addresses the quartic-
equation symmetry condition as demonstrated using Table I, Example 3. The presentation
also explains why the Equation (round-off error mitigation design for quartic equations is
based on the modified Euler algorithm rather than an alternative quartic-equation
algorithm.

Figure 7 shows how multiplicity magnifies the solution round-off error. Figures 7-1 and
7-2 plot the cubic and quartic functions for the two example multiplicity equations in Table
I, Section I. The function intersects the horizontal-axis at solution values. If the function
has zero slope (zero first derivative) at the intersection point, then the solution is a
multiple solution. At the intersection, if the function has both a zero slope and a point of
inflection as in Figure 7-2, then the first two derivatives are zero, and the multiplicity is at
least 3.

For any of the figure’s multiple solution values, any small error in the function’s vertical
position produces a much greater error in the intersection location. That is, a small round-
off error in the function value produces a magnified solution error.

The error analysis beginning in Section VII shows that magnification of residual solution
error is an inherent feature of multiplicity. Calculated solutions for most simple solutions
have maximum relative errors on the order of ¢ = 2752 » 2.22x10716, the computer’s
maximum relative storage error. However, maximum relative error is on the order of
€1/2 ~ 1078 for multiplicity 2 solutions and the order of €1/3 ~ 1075 for multiplicity 3
solutions. See Examples 1 and 2 in Table I of Section .

Our approach to mitigating this type of error magnification is to anticipate and
accommodate the multiplicity condition.

Section III above has already described the first major feature of our error-mitigation
design: incorporating logic for the Figure 3 special cases into our solution-calculation
algorithms. Each special case is defined by a zero value for some calculated parameter. A
cubic equation with q = r = 0 indicates a multiplicity of 3. Multiplicity 3 quartic equations,
like Example 2, have a multiplicity 3 resolvent cubic equation. A cubic equation withq <0
and R =r? + g3 = 0 has a multiplicity of 2.

This section adds the remaining major feature to mitigate multiplicity error magnification.

For each of the special-case, zero-value parameters (e.g. r, g, R), we calculate a reasonable
upper bound for its round-off error. The parameter R, for example, will have an upper-
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bound error Re g, where Reis described below. The Rk value satisfies Re > |R|. The
computer’s epsilon value € = 272 is stored as a universal constant of the mitigation design.
If the absolute value of the calculated parameter is less than the upper-bound error, then
the parameter is reset to zero. For example, if [R| < Re¢, then R is reset to 0.

This approach assures that if multiple true solutions equal the same real value, then the
corresponding calculated values also equal a common real value. Any residual round-off

error in the calculated equal solutions is of the order of g, not €1/2 or g1/3.

Figure 7 Cubic and Quartic Functions for Examples 1 and 2

Fig 7- 1 Example 1 Cubic Function Fig 7-2 Example 2 Quartic Function
p(z) = z2-522+8z-4 P(Z) =74-4273+6.6 72467 +1.2
=(z-2)2(z—-1) =(Z-1.2)(Z-1)3
0.2 : : :
p(z) | i P(Z) !
0 A of———
-0.2 ' ! ;
0 1 2 3 0.8 1 1.4

The shallow slope of
the function curve implies that a small

function uncertainty —__
; |
1
Y —

le ; )|
[~ “I

produces a much greater uncertainty
in the multiple solution values.
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Multiplicity Error Mitigation in the Quadratic-Equation Algorithm

The mitigation design adds some simple calculations into the preliminary quadratic-
equation algorithm, Figure 4, to address round-off error magnification for the multiplicity
condition. The equation Z2 + BZ, + C = 0 has solutions (-B ++/D)/2 where D is the
discriminate D = B2 — 4C = 0. When D = 0, then the equation has two equal solutions
Z1=72=X1=X2=-B/2.

Suppose the true D value is zero, but D is calculated as a round-off error of
dD = +B2 x 10716, Then the calculated solutions become

—(B/2)(1+V£106) = —(B/2)(1+108) OR —(B/2)(1+i108)

depending on the sign of 6D. For the multiplicity condition, the discriminants relative error
of 10716 produces the magnified error of 1078 in the solution.

The mitigation design addresses this situation by calculating a reasonable upper bound for
the round-off error [0D| in D. Because D is the calculated value D = B2 — 4C, we model the
error 6D as a function of the error 6B in B and error 8C in C by using the partial derivatives
0D/0B = 2B and 0D/0C = -4

oD

oD
D £6B+%8C—2B8B 4 5C.

The true error contributions of B and C may either reinforce or cancel each other
depending on their signs. For this purpose, we want an upper bound of |6D|, so we take the
error contributions from B and C as reinforcing each other.

dD
|8D|max |% |6C|max = 2|B| |8B|max +4 |8C|max

o 16Bna +

Coefficients B and C may be supplied by the user to solve a quadratic equation, or they may
be supplied by the cubic-equation or quartic-equation algorithm or a post-processing
algorithm. For now, assume that B and C are user inputs. Then the worst-case errors
|0B|max and |0C|max are just the computer’s one-bit storage errors for B and C. That is,

6Blnax = IBle. and [6Clomae = ICle = [3Dlunae = (|52 181+ [22] 101

Each of the error upper bounds |6B|max, |8C|max, and |0D|max is the product of a positive error
size parameter times €. These size parameters are given the corresponding label with the
subscript E. Thus, Bg, Cg, and Dk are the error size parameters for B, C, and D, and

|8B|max = Bke |8C|max =Cge |8D|max = Dkeg (31)
where Be=|B, Ce=|C|, and (32)
dD dD
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The value [0D|max = Dk ¢ is the upper bound of round-off error [3D| that we seek in
order to provide error mitigation in the quadratic-equation multiplicity condition.
The mitigation design includes the following three changes to the quadratic-
equation algorithm of Figure 4.

e The computer’s epsilon value € = 2752 is stored as a universal constant.

¢ In addition to the coefficients B and C, the input values include the error size
parameters Be and Ce. If B and C are user inputs, then set Be = |B| and
Ce = |C|. Otherwise, Be and Ck are calculated and supplied by a higher-level
algorithm.

e The following two calculation lines are included in the algorithm
immediately following the calculation of determinate D = B2 — 4C:

o De=2|B|Be + 4Ce
o If D] < Dge thenD=0

Figure 8 shows the final quadratic-equation algorithm. This mitigation design
assures that two true equal real solutions are calculated accurately as two equal real
solutions. Any residual round-off error is not magnified.

The mitigation design for the cubic- and quartic-equation algorithms requires the
calculation of several additional error size parameters like Bg, Cg, and De. Equations (31) to
(33) serve as models for the way these size parameters are used and calculated. If some
value L is a user input, then the associated error size parameter is Lt = |L| as in (32). IfLis
calculated, then Lk is calculated using the appropriate partial derivatives as in (33). If the
cubic- or quartic-equation algorithm invokes the quadratic-equation algorithm, then the
higher-level algorithm calculates Bt and Ce by employing appropriate partial derivatives as
shown below.

Multiplicity Error Mitigation in the Cubic-Equation Algorithm

Figure 9 provides the final calculation algorithm for solving the cubic equation. It updates
the preliminary calculation logic of Figure 5 with the calculations needed to prevent round-
off error magnification for the multiplicity condition. The computer’s epsilon value € = 2752
is stored as a universal constant.

The input list for Figure 9 includes not only the cubic-equation coefficients az, a1, and ao,
but also the corresponding error size parameters azg, aig, and aoe. The coefficients may be
supplied by the user to solve a cubic equation, or they may be supplied by the quartic-
equation algorithm or its post-processing algorithm. If az, a1, and ao are user inputs, then
azg, aig, and aok are the corresponding absolute values:

aze = |az| aie = |a1] aoe = |ao|. (34)
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Otherwise, the higher-level algorithm calculates and supplies values for all of the cubic
algorithm inputs: a2, a1, ao, azg, aig, and aok.

Figure 8 Final Calculation Algorithm for Solving the Quadratic Equation

Universal Constant: € = 2752~ 2.22x10716
Inputs:

1) Real coefficients B and C of the quadratic equation Z,z1 +BZ,+C=0
2) Error size parameters B, and C;. If these values are not calculated by a higher-level algorithm,

then set them to B, = [B|, C;=C|.

Outputs: X, X,,YsothatZ, =X, +1iY, Z, = X, —iY are solutions of the quadratic equation.

B, C, B, Ce

D=B2-4C
De = 2|B|Be + 4Ck Y=0
If D] < Dee thenD=0

Numerical

Recipes

et
-
Q
o
[p]
—
=
c
(0]

X1=—B/2

X =X X, =Q X1=—C/Q

Y=,|D|/2 X2=C/Q X,=Q
X,, X2,Y
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Figure 9 Final Calculation Algorithm for Solving the Cubic Equation

Universal Constant: € = 2752~ 2.22x10716

Inputs:
1) Real coefficients a,, a,, and a, of the cubic equation z3 +a,z2 +a, zn+a, =0

2) Error size parameters a,, a,, and a;. If these values are not calculated by a higher-level

algorithm, set them to a,; = |az|, a,;=lai1], ay; = |acE|.
Outputs: z,, X,, X;, y, so that z1, z,=x,+ iy,, z,=x,— iy, are the three solutions of the cubic equation.

SPECIAL CASES
/az, ai, ao, azg, aig, aOE/ 1. a0 = 0 (at least one solution equals 0)
——— 2.q =r = 0 (three equal real solutions)

False True
a,=0

Quadratic Equation Algorithm, Figure 8
Inputs: B =az, C=a1, Be=azg, Ce = aie

If |gl < qze thenq=0 Outputs: X1, X2, Y

q=2a,/3-2a,%/9, qe=air/3 + 2az| aze/9

r=(a,a, —3ay)/6-a,/27
re = |a1/6 — a3 /9| aze + |az|a1e /6 + aoe/2
If r| < rge thenr=0

R=r2+ q3 Re=2|r|re+ 3q2qE

IR| < Rpg >-1rue
False R=0 —
If >0 Or r=0 Then =X || %=X [|%=0 (%=X
q:r:o X3:X1 X3=X2 X3—X2 X3_0
| [ [ |
q=r=0 True
|
y2=0,
False Z1 =Xz =X3=-az/3

@ [ mXXeYs S
EXIT ) No cubic-equation

post processing
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Figure 9 Final Calculation Algorithm for Solving the Cubic Equation (Page 2)

SPECIAL CASES
3.R=1r2+ g3 =0, r =0 (two equal real solutions)
4.r =0, g # 0 (solutions are evenly distributed)

False
True
y,=0,
s=.—-q
>0 False

True

t,=2s

th =i =S

€
yZ =tx= 0
t,=s, t, =-
€ | | Viete
1/3
A= (r| + VR) {0 ifq=0
. {A—q/A if r> 00 Cos*(Max{Min[r/(-q)*/%,1],-1}) if ¢ < 0
. 1= .
N;mgncal q/A-A ifr<0 0, =03 &,=0,-2n/3 ¢, =0, +2n/3
ecipes |, _ i _ _t /7
x \/3_" 1/ t, =2,/-qcosd, t, =2./—qcosd,
3 q
Y2=7(A+K) t,, =2,/—q cos¢, y,=0
]

z,=ti—az/3, Xx,=txx—az/3, X;=tx—az/3
]

S wxexyy, S
[

Cubic Equation Post
Processing

If ao = 0, then Special Case 1 applies. One solution is 0, and the other two are solutions of
the quadratic equation z2 + azz,+ a1 = 0. To find these two solutions, the cubic-equation
algorithm invokes the Figure 8 quadratic-equation algorithm with the following input

values:
B=az C=ai, Be=azk Ce=aik
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If ao # 0, then the mitigation design calculates error size parameters g, re, and Re
corresponding to g, r, and R:

q=ai/3 —az22/9, r = (aza1—3a0)/6 —az23/27, R=r2+q3.

It uses inputs azg, a1k, and aoe and the appropriate partial derivatives:

dq/0a, = 1/3, dq/0da, = —2a,/9
dr/da, = a,;/6 —a3/9, dr/da, = a,/6, dr/da, = —1/2
oR/0r = 2r, 0R/dq = 3q2.

Values for qg, rg, and Rk are calculated using the following formulas.

d 0 a 2]a,|a
qE = —qa1E+ —lazz = 2E+ 1221228 (35)
a1 2 3 9
or or or a az lay|a a
re = |—|aze + |—|aie + |—|awr = |—1——2~’c1215+2—1]3‘|'LE (36)
a, a ag 6 9 6 2
OR OR
= | _— = 2
Re |ar rE + |aq qE 2|r|re + 392qE (37)

If the absolute value of g, r, and/or R are sufficiently small, then the value is reset to zero
according to the following tests.

If|g<qee, then q=0.
Ifrl<ree, then r=0.
IfRl<Reg, then {R=0 and if(q=0orr=0)thenq=r=0}.

This last line of logic is necessary to prevent round-off error from creating an illogical
situation in which R =r? + g3 = 0 and either r = 0 or q = 0, but not both. Also note that
q cannot be positive if R = 0.

These logical tests involving gk ¢, 1k €, and Rk € assure that the calculated value of g, 1,
and/or R is set to 0 whenever the corresponding true value is 0. If the cubic equation has
multiple true solutions equal to the same real value, then the corresponding calculated
solutions also equal a common real value.

If either Special Case 1 (a0 = 0) or Special Case 2 (q = r = 0) apply, then cubic-equation
post processing is not required. The Figure 9 algorithm exits immediately after output of
the solution values z1, x2, x3, y2. Special Case 1 needs no post processing because it uses the
Figure 8 quadratic-equation algorithm, whose Numerical Recipes design accurately
calculates any nonzero solutions regardless of any differences in their magnitudes. Special
Case 2 needs no post processing because it has three equal solutions; there are no
differences in magnitude to create solution-error magnification.
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Page 2 of Figure 9 shows the remainder of the algorithm for cubic-equation cases other
than Special Cases 1 and 2. This portion of the algorithm is unchanged from the Figure 5
preliminary algorithm except for the indication of post processing at completion.

Table III below shows calculated parameters for the Example 1 cubic equation

z3 - 522+ 8z,—4 = 0. The table compares calculations of the Figure 1 algorithm without
round-off error mitigation to those of Figure 9 with mitigation. The equations true
solutions are 2, 2, and 1. The true values of rand q arer=-1/27 and q =-1/9, so the true
value of RisR=r%2+ g3 =0.

Both algorithms calculate R as a round-off error R = 8R = 1.04083x10717.

Because the calculated R is positive, the original Figure 1 algorithm uses Numerical Recipes
to complete the calculation, starting with the calculation of A.

A= (| +VR)""* = (1) + VoR)

With true valuesr = -1/27 and R = 0, the true value of Ais 1/3. The erroneous calculated
R value SR produces an error 6A in A given by

8A = (Iri +VoR)""* —rf1/2 = |1/ [(1 + VER/r)" " — 1] ~ Ir|/3 [ 2VBR/Ir]| = 3v5R

where |r| = 1/27. Taking the square root of 6R in the A formula greatly magnifies the
error: 0A = 3vVOR = 9.678588x107°. To a first approximation, the error dA cancels itself out
in the subtraction t1 = q/A — A. The values tx2 = tx3 = —t1/2, 71, X2, and x3 are therefore

unaffected by 0A. The true y2 value is 0, but the sum in the calculation y2 = \/2—5 (A+q/A)
has the true value of A cancel itself out while the error 8A is doubled:
calculated A+ q/A = A+8A+ q/(A+ 3A) = A+0A + (q/A)[1/(1+3A/A)]

~ A+3A + (q/A)(1-3A/A) = A+q/A+ S3A(1—q/A?)
1/3+(-1/9)/(1/3) + 8A[1-(-1/9)/(1/3)%]
calculated A + q/A = 20A

3
calculated y2 = \/2—_ (calculated A + q/A) = V3 8A =3+/38R = 3v3x1.04083x10~17

calculatedy2 = 1.676381x1078

The final algorithm, Figure 9, avoids this magnified error. After calculating R, it calculates
Re = 1.481481481 via equations (34) to (37). Because |R| = 1.04083x10717 < Rg e =
3.28955x1071, the algorithm resets R to 0 and invokes Special Case 3 to calculate the
correct solutions.
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Table III. Calculated Parameters for Example 1 Cubic
Equation with Multiplicity 2

Example 1 Cubic Equation: z3-5z2+8z,-4=0
with solutions 2, 2, and 1
Parameter | Figure 1 Cubic-Equation Figure 9 Final
Symbol Algorithm Algorithm
(Value without error (Value with error
mitigation) mitigation)
€ g=272=
2.2204460E-16
az -5 -5
a1 8 8
ao -4 -4
A2E 5
a1E 8
AoE 4
ao=20 FALSE FALSE
q -0.111111111 -0.111111111
qgE 8.222222222
lgl<qee FALSE
r -0.037037037 -0.037037037
IE 15.88888889
[r|<ree FALSE
R=r2+g3 1.04083E-17 1.04083E-17
Re 1.481481481
IRI<Reg TRUE
Rreset 0
q=0 Orr=0 FALSE
R=0 TRUE
Numerical Recipes Special Case 3
2+ q3>0 R=0,r#0
A 0.333333343
t1 -0.666666667 0.333333333
tax 0.333333333 0.333333333
y2 1.676381E-08 0
tax 0.333333333 -0.666666667
Z1 1 2
X2 2 2
y2 1.676381E-08 0
X3 2 1

It is possible for the mitigation design to calculate two solutions as equal to each other
when the corresponding true solutions of the cubic equation differ from each other by a
very small relative value. Such a near-miss cubic equation has little practical significance
because the coefficients would require extreme precision. Section X addresses this
situation in detail, but for now consider the following example.

We modify the Example 1 cubic equation z3 — 5z2 + 8z,—4 = 0 (true solutions 2, 2, and 1)
by decreasing the constant coefficient from —4 to —4.00000000000001, a change of
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1x10714, The calculated R value decreases from 1.04083x10717 to the new value

R =-3.8x10716 so that |R| = 3.8x10716 > Rg ¢ = 3.3x10716. The calculated R keeps its
negative value, and the algorithm correctly reports the two different solution values of
about 2.0000001 and 1.9999999 (2 £ 1x1077). Only if the constant coefficient —4 changes
by a nonzero magnitude less than 1x10714 does the calculated |R| become small enough that
Ris incorrectly reset to zero, and the algorithm produces the multiplicity result: 2, 2, 1.

Multiplicity Error Mitigation in the Quartic-Equation Algorithm

Figure 10 revises the Figure 6 quartic-equation calculation logic similar to the way that
Figure 9 revises the Figure 5 cubic-equation calculation logic. Figure 10 updates the
preliminary calculation logic with calculations to address round-off error magnification in
the multiplicity condition. The computer’s epsilon value € = 2752 is stored as a universal
constant.

Figure 10 uses the same inputs as Figure 6: the four quartic-equation coefficients As, Az, A1,
Ao. The corresponding error size parameters are calculated immediately as the absolute
values.

Ase = |A3], Aze = |A2), A1e = |A4] Aok = |Ao| (38)

If Ao = 0, then Special Case 5 applies (dashed blue box). One solution, Z1 = X1+iY3, is zero,
and the other three are solutions of the cubic equation Z3 + A3 Z2+ A2Zn + A1 = 0. To find
them, the algorithm invokes the Figure 9 cubic-equation algorithm with the following input
values:

az=As3, a1=A2 ao=Ai azx=Asg aig = A2, acE= A1k

If Ao # 0, then Figure 10, like Figure 6, calculates

C =As3/4, b2 = A2 — 6C2, b1 = A1 - 2A2C + 8C3, bo = Ao — A1C + A2C2 — 3C4.

The mitigation design also calculates the corresponding error size parameters Cg, bzg, b1k,
and boe. These are derived in the usual way from Asg, A2k, A1t and Aok.

Cg = E Azp = E (39)
dA; 4

b,g = % Asp + % Cg = A, + 12|C|Cg (40)
d0A, aC

b = 9by Ag + 9by Ap + |% Ce = A +2|ClAg + |—2A, + 24C?|Cg (41)
0A, d0A, aC

bog = %AOE_*_ %o Ag + %AZE‘F %5 Ce
0A, 0A, 0A, daC

bog = Aog + |ClAE + C?A,r + |—A; + 2A,C — 12C3|Cg (42)
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Figure 10 Final Calculation Algorithm for Solving the Quartic Equation

Universal Constant: & = 2752 = 2.22x10716
Inputs: Real coefficients As, Az, A1, and Ao of the quartic equation Z} + A;Z3 + A,Z2 + AZ, + A; = 0
Outputs: X, X,, Y, X;, X,, Y; so that Z, =X, +iY,, Z,=X,-iY,, Z,=X,+iY,, Z,=X,~iY; are its four solutions.

/ As, Az, A1, Ao /
]
Asg=|A3] Azxe=|A2] Aie=|A1 Aor=]Ao

/\ True
False A =0

0

C =A;/4 Cy=Ay/4 Special Case 5: Ao =0

At least one solution
equals 0.

2
b,=A,-6C, b, = A, + 12/CIC,

b, = A, - 2A,C + 8C’,

_ _ 2
b, =A; + 2[C|A,; + [-2A, 4+ 24C"|C, Inputs:  a,=As, a, = Az, a,= A,
by =A,—A,C+A,C* -3¢

0 a,; = Asg, a;;, = A2k, ap; = At

byg = Agg + |CIA, + C” Ay + |-A, + 2A,C - 12C° | C,

Outputs: X2=1z, X3=X,, Xa =X, Y3=y,

i
1
1
1
1
1
1
1
: Cubic-Equation Algorithm, Figure 9
1
1
1
1
1
1
1
1
1

True

XY XK, Y, S
EXIT No quartic-equation

a,=b,/2, a,, =b,/2 post processing
a, = (b5 —4b,)/16, a,;=|b,|b,./8 +b,/4

— _h2 — I 1
Iai__bi@}_' o _IblI_blE/_32_ —_—— Special Case 6: bo = 0
I biew =0 Test for quartic At least one depressed

solution equals 0.

equation symmetry

I If b2<0 Then
If [a1/b3| < 1x10°8 Then bigw = bz /~b,/2
End If
If |b1| < Max(b1E, biew) € Then

Tx1=Y1=O
|

Cubic-Equation Algorithm, Figure 9

| If|ai| < aie € Then a,=0, a,=by, a,=b,,
: a1=0 (Symmetry and Multiplicity)

a,;=0,a,;=b b

262 do = Pig
If |az| < aze € Then a2 =0 (Multiplicity 4)

End If

I
I
I
I
I

bi=0, ao=0 (Symmetry) I
I
I
I Outputs:
I

I
I
I
I
I
I
I
I
I
I
I
I
I
Inputs: :
I
I
I
I
I
I
I
I
Te=12, Ts=X, Ta=x,; Y, =Y, :
I

1

— — — — — — — — — — — — — —
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Figure 10 Final Calculation Algorithm for Solving the Quartic Equation (Page 2)

Solve Resolvent Special Case 6: B
Cubic Equation bo =0

Cubic-Equation Algorithm, Figure 9

Inputs:  a, 2,8, 8, a5 A

Outputs: z,, X, X5, ¥,

If z,<0 Thenz, =0.
If x,x, <0 Then
If x, >-x; Then x, =0; Else x, =0.

|
Ifb, >0,thenX=1; ElseX=-1
d=x,%;+Vy,y, Sy =VZ1

D=X2+X3—22\/a D=X2+X3+22\/a
Sp = |D| Sp = |D|
FalseTrue False @ True
Y, =0 Y, = Y, =0 Y, =sp
Txl =Sz1+ SD Tx1 = szn Tx3 =S4 + Sp Tx3 = =Sz
Ty, =sz1—sD Txz = Tx1 T.,=-S,,—5p T,=T,
[ [
X, =Ty, —-C X,=Ty,-C X; =Ty —-C X,=Ty,-C

[
/ X, X, Y, X,, X, Y3/
[

Quartic-Equation Post Processing

The algorithm tests for Special Case 6, bo = 0, by testing whether |bo| < bok g, that is,
whether the calculated |bo| is less than the upper bound of its round-off error. If so, then bo
is assumed to be 0, and Special Case 6 applies (dashed green box). One depressed solution,
T1 = Tx1+iYy, is zero, and the other three are solutions of the cubic equation

T2 + b2Tn + b1 = 0.
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To find these other three depressed solutions, the algorithm invokes the Figure 9 cubic-
equation algorithm with the following input values:
az=0, ai=bz, ao=b1, ax=0, aig,=bz aoE=Dbik

If Special Case 6 does not apply, the algorithm calculates resolvent-cubic-equation
coefficients az, a1, and ao and their corresponding error size parameters azg, aig, and ack.

az =bz/2, a1 = (b3 — 4bo)/16, ao=—b?/64

da b

a = |35 P2 = (43)
da, da, |by|bsg | bog

ajg = ab, byg + ab, bog = st (44)
da b, |byg

Ao = d_b(l) big = 1321 (45)

Additional calculations, shown in the dashed red box, are required for the quartic equations
with symmetry or its near miss.

Quartic Equations with Symmetry or Its Near Miss

Our usual method of detecting Special Case 1, ao = 0, in the resolvent cubic equation can fail
for quartic equations with a combination of symmetry (or its near miss) and multiplicity
(or its near miss). The following discussion shows how the calculations in the red box
address this situation.

The case ao = 0 in the resolvent cubic equation implies symmetry in the quartic equation.
If ao = 0, then b1 = 0 because ao = — b?/ 64, Equation (13). The value b1 is the linear
coefficient in the depressed quartic equation, Ty + b2T2 + b1Ta + bo = 0, Equation (9). The
case ao = b1 = 0 reduces the depressed quartic equation to

T +b2T2 + bo = 0.

This is a quadratic equation in T2. The quartic equation’s four depressed solutions Tn are
the four values

iJ[—bzi b — 4b |/2.

The negative of every depressed solution Th is itself a depressed solution. The four Tn and
the depressed quartic polynomial Pr(T) = T# + b2T? 4+ bo = Pr(-T) are symmetric about
T = 0. The four quartic-equation solutions Zn = Tn — C are symmetric about Z = —C. Thus,
Special Case 1 (a0 = 0) for the resolvent cubic equation corresponds to symmetry in the
quartic equation: b1 = 0 and Pr(T) = Pr(-T).

The mitigation design’s normal approach to detect this symmetry is to reset b1 and ao to O if
|b1| < b1k €, but this approach fails for a type of quartic equation that has both symmetry (or
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its near miss) and multiplicity (or its near miss). The quartic equation has the four
depressed solutions

T1 =T, T2 =T, Ts = —To + AT, Ts= -To—- AT where |AT| << To. (46)
The quartic equation solutions are Zn = Tn — C, and the quartic equation coefficients are
given by check Equations (14) to (17):

Az =4C A2 =-2T¢ + 6C2 — AT? (47)
A1 = —4C(T¢ — C2) + 2(To - C) AT? Ao = (TZ — C2)2— (To— C)2AT2. (48)
The check equations applied to the depressed solutions in (46) give the depressed quartic
equation coefficients:
b2 = - 2T — AT? b1 = 2To AT? bo = T¢ (T¢ — AT?). (49)

Note that these expressions for the bn are the same as those for the corresponding An with
C set to zero. Apply Equations (38) and (39) for the error size parameters A1g, A2k, and Cg
to Equation (41) for b1e:

big = |A1] + 2|Cl|Az| + |—-2A, + 24C?||C]|. (50)

The problem of using |b1| < b1t € to detect symmetry becomes evident by examining the
special case AT = A3 = C = 0. The resulting quartic equation has symmetry and two double
solutions: T1 = T2 = To and T3 = T4 = —To. With AT = 0, Equation (49) gives b1 = 0. The
problem is that Equations (47), (48), and (50) imply that big = 0. An incremental change
in C from 0 leaves b1 = 0 and produces only an incremental increase in bie. That small
increase cannot assure that bir ¢ exceeds the round-off error in the calculated b1 value.

We need an effective, new, upper bound of the round-off error in calculated b1 for quartic
equations that have both symmetry (or its near miss) and two double solutions (or near
misses). The value bik¢ is inadequate for that situation.

To find that round-off error upper bound, examine the calculation of b1 from check
Equation (20) where b1 replaces A1, Y1 = Y3 = 0, and the Xn become the depressed quartic-
equation solutions in (46): T1 = T2 =To, T3 =—-To + AT, T4 =-To—AT.

b1 = —[T1T2(T3+T4) + T3T4(T1 + T2)]
b1 = —[TZ (-2TZ) + (T¢ — AT?)(2To)]

Suppose AT2/T2 is very small. A computer may calculate the difference (T§ — AT?) in this
last expression simply as T and then calculate the resulting b1 as 0 if

AT2<TZ e,

Tée is the least significant bit value of the stored T value. The true b1 per (49) is
b1 = 2ToAT2. Thus, if |b1| = 2|To| AT2 < 2|T§|e, then b1 might be calculated as zero. The
value 2|T§|e is the one we seek for the upper bound of round-off error in calculated bx.
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The value |To| in 2|T¢ e is not available to us in practice, so we estimate |To| from the
calculated value of bz in (49): b2 = —2TZ — AT2. The assumption |AT| << To implies that

bz ~—2TZ and allows us to estimate |To| as [To| ~ \/—b,/2 and 2|T§| as
2|To|3= —b,,/—b,/2 where b2<0 and |AT|<< To.
We show later how we assure that |[AT| << To for these calculations.
When the quartic equation has both symmetry (or its near miss) and two double solutions
(or near misses), our new test for resetting b1 and ao to zero becomes:

For bz <0 and |AT| << To, reset b1 and ao to 0 if |b1| < bie.w & where

biew = —b,/—b, /2. (51)

If the resolvent-cubic-equation coefficients a1 and ao both equal zero, then the quartic
equation has both symmetry and multiplicity. Show this by applying Equation (49) to
Equation (12) for a1:

a1 = (b2—4bo)/16 = [(—2TZ — AT2)2 — 4TZ (TZ - AT?)]/16 = (8TZAT? + AT4)/16 (52)

When AT is zero, then so is ai.

The algorithm assures that |AT| << To when it applies the test |bi| < b1t w € for resetting b1
and ao to zero. First it initializes bie.w to 0. If bz <0, it recalculates big.w = —b,./—b,/2

only if |a1/b%| < 1x1078. From Equations (49) and (52), this means that bie.w = 0 unless
ay (8TEAT? + AT*)/16 AT?
b2| ~ |4T# 4+ 4T2AT? + AT#| ~ [8T?
Thus, bie.w = 0 unless (AT/To)? is less than about 8x1078.

< 1x1078,

At greater values of (AT/To)? when [a1/b3| > 1x1078, b1ie_.w is no longer needed. The value of
bie in Equation (50) is sufficiently great that b1k € can fulfill its proper role as round-off
error upper bound for b.

Notice that the computation in the red box of Figure 10 keeps the “If b2 < 0” and the
“If [a1/b3| < 1x1078 “ as separate lines. Keeping them as separate lines of code is necessary
to prevent a run-time error when bz = 0.

After the algorithm determines the value of b1k w, either 0 or —b,./—b,/2, it tests whether
|b1| < Max(big, biew) €. The maximum of b1k € and b1k w € serves as the upper bound of
round-off-error magnitude in the calculated bi. If |b1| < Max(big, biew) €, the algorithm
resets b1 and ao to zero, indicating that the quartic equation is symmetric. Also, if

|b1| < Max(bik, b1t w) €, the algorithm tests whether |a1| < air €.
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If |a1| < a1k g, then the algorithm resets a1 to zero indicating that the quartic equation has
multiplicity as well as symmetry. Also, if |ai1| < a1k ¢, the algorithm tests whether
|az| < aze e.

If |az| < aze g, then az is reset to zero, which implies that all coefficients of the resolvent
cubic equation are zero: az = a1 = ao = 0. This situation produces zero values for all three
resolvent cubic equation solutions and all four depressed quartic equation solutions:

Z2=721=20=T1=T2=T3=T4=0.

The four quartic equation solutions Zn = Tn — C, therefore, all equal the same real value
(multiplicity 4): Z1 = Z2 = Z3 = Z4 = -C = -A3 /4.

This completes the Figure 10 calculations in the dashed red box for quartic equations with
symmetry (or its near miss) and perhaps also multiplicity (or its near miss). Calculation of
az, a1, ao, azg, a1k, and aok is complete, and the algorithm is ready to invoke the Figure 9
cubic equation algorithm to solve the resolvent cubic equation.

Page 2 of Figure 10 is the same as that of the preliminary quartic-equation algorithm,
Figure 6, with the following exceptions. The Figure 10 algorithm invokes the final cubic-
equation algorithm of Figure 9 rather than the preliminary cubic-equation algorithm of
Figure 5. At completion, the Figure 10 algorithm indicates the need for quartic-equation
post processing.

Selection of the Modified Euler Quartic-Equation Algorithm for the Mitigation Design

The modified Euler quartic-equation algorithm is selected over alternative quartic-
equation algorithms for the mitigation design because it requires relatively few changes.

Except for the if-statements in Figure 10’s dashed red box, the Euler quartic-equation
algorithm needs no branches for the multiplicity condition because it uses all three
solutions z1, z2, and z3 of its resolvent cubic equation. Most other quartic-equation
algorithms use only one solution. Figure 11, described below, shows that multiplicity
among the Euler resolvent-cubic-equation solutions zn corresponds to multiplicity among
solutions Th of the depressed quartic equation. If the quartic equation has multiplicity,
then the Figure 9 algorithm calculates resolvent-cubic-equation solutions with the
appropriate multiplicity, which allows the normal Euler algorithm computation to produce
quartic-equation solutions of the correct multiplicity.

Figure 11 below summarizes the relationships between the depressed quartic equation, the
Euler resolvent cubic equation, and their solutions for multiplicity and quartic-equation
symmetry. The figure’s first section shows the Depressed Quartic Equation (Equation (9))
with solutions Tn. The Tx are related to solutions Zn of the quartic equation

7t + A3Z3 + A2Z2 + A1Z,+A0=0, n=123,4
by Th=7Zn+C = ZIn=Tn—-C where C=As3/4.

Thus, any multiplicity among the Zn has a corresponding multiplicity among the Tn.
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Figure 11 Relationships between the Depressed Quartic Equation, the Euler Resolvent Cubic
Equation, and Their Solutions for Multiplicity and Quartic Symmetry

Depressed Quartic Equation

T§+b2T§+b1Tn+b0: 0, n=1,234 Ti1+ T2+ T3+Ts=0
Euler Resolvent Cubic Equation
z3+az2+aiz,+ao=0, n=1,23
where az = by/2, a1 = (b3 —4bg)/16, ap = —b3/64

Properties of the Resolvent-Cubic-Equation Solutions
Solution z, is real. Solutions z; and z3 are real or they are a complex conjugate pair.
7120. z2232>0. Ifz;andzzarereal,thenz; > z; > z3
Thus, if z; and z3 are real, then eitherz; > z; > z3>20 or z; 2 0 > z; > zs.

Solutions of the Depressed Quartic Equation
VI + VT - 55z
To = Vai — V23 + 3523 pof 1 ifbi>0 s={ 1if V7573 >0
Ts = —/z; + \/Z+Zs\/z_3 —1 otherwise _
T = I ~ V7~ 357

T4

1 otherwise

Multiplicity 2 Relations

If22>0,Tza=—Z; + 24/Z;, Ta=—z1 — 22,
Ifz2 <0, Ts = —vz; +i2\/|2,], Ta=—yz; —i2./|2,]
[f22>20,Ti= z; +2VZ;, T2= 7z — 27,
If22<0,Ti= vz +i2\/|z;], Ta= vz; —i2\/|z,]

(21=2,22320 © real To =Tz | Te=Ts=3z; Ti=2y7 —5Jz5, Ta=-2y7 -3z s=1

Multiplicity 3 Relations
71 =172 = 173, X’s= 1 < Ti=T; & T1=T=Ts= \/Z, T4:—3\/Z

‘Zz=Z3, Y’s= 1< T1=T2| Ti=T.= \/Z

‘Zz=Z3, d>s=-1< T3:T4| T3=T4=—\/Z_1

71 =72 = Z3, >s=-1 & T2=T4 = T2=T3=T4=—\/z, T1= 3\/Z

Quartic Symmetry Relations

-T, < T3=—T4 72;,=0 < T1=—T3 < T, = -Ty

z1=0 © T,

Z3:0 = T1=—T4 = T2=—T3 2222320 = T1:T2:—T3:—T4:\/Z

Z1=Z2=0, Z3<0 = S=—1, T1=T4=—T2=—T3=iz,/—z3 = S=—1, T1=T4

Quartic Multiplicity 4 Is Symmetric

Z1=Zz=Z3=0 = T1=T2=T3=T4=0C> S=1, T1=T4
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The second section shows the Euler Resolvent Cubic Equation and the relationship
between its coefficients an to the coefficients bn of the depressed quartic equation.
Solutions zn of the resolvent cubic equation have the properties given in the third section,
Properties of the Resolvent-Cubic-Equation Solutions. The property z2z3 > 0 implies that if
z2 and z3 are real, then z2 and z3 cannot have opposite signs. The property z1 > z2 > z3 then
implies that either z1 2z2>z3>0o0rz1 2 0 > z2 > zs.

The fourth section, Solutions of the Depressed Quartic Equation, provides formulas for T1,
T2, T3, and T4 as functions of z1, z2, and z3. These formulas are from this website’s
document https://quarticequations.com/Quartic.pdf, Equations (10) through (13). The Tn
equations resemble the original Euler formulas, but they are configured so that the radical
sign denotes the principal square root. Note that the value s in the figure equals 1 except
when z2 and z3 are both real and are both less than zero.

The equivalent modified Euler formulation, the one applied in our quartic-equation
algorithms, is:

T, = \/Z+\/X2+x3—22 XyX3 + V2 \/Z+\/Zz+z3—22 ZyZ3

T, = +z; —\/XZ + X5 — 22\/X,X3 + Y5
Ts = — \z; +\/X2 + X5 + 22/X,X3 + y2

\/Z _\/Z2+Z3_22 ZyZ3

_\/Z_]_ +\/ZZ +Z3 + 22«[2223

T4=—\/Z—\/X2+X3+22 XpX3 + Y5 _\/Z_JZZ‘|'Z3+2E 2273

These modified Euler expressions avoid the need for complex-number operations, but the
formulas in Figure 11 are used there because of their simplicity in the multiplicity
condition, for which the zn are all real.

The remaining sections of Figure 11 (Multiplicity 2 Relations, Multiplicity 3 Relations, etc.)
follow directly from the first four sections.

The Multiplicity 2 Relations show that a multiplicity 2 among the zn implies multiplicity 2
among the Tn and vice versa. For the first case suppose that z2 = z3 and Xs = 1. Then the Tx
formulas in the figure give T1 = T2 = y/z,. T1and Tz must be real because z1 > 0.

We can also start with T1 = T2. Then the T1 and Tz formulas give
VZg + 2, —Es\Jz3 = i~z +3s\Jzz = 2z = Zs\fz3 AND Ti=T2=+z,.

T1and T2 are again real because z1 > 0. Xs can only be 1 or —1. If zz and z3 are real, they
cannot have opposite signs so z2 = z3 and s = 1. If zz and z3 are not real, then they are a
complex conjugate pair. Let ¢ be the argument of z2. Then

\/Z = |Zzlei¢/2 =3Ys Z3 = >s |Zzle_i¢/2 — ei¢/2 = ie_i(b/z
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If the plus sign applies, then ¢ = 0, z2 and z3 are real, and z2 = z3. If the minus sign applies
then
elt/2 = —e7/2 = 92 =n—¢/2 = ¢ =n,

which implies that z2 and z3 are real with equal magnitude and opposite sign, an
impossibility for zz and z3. Thus, only the plus sign can apply. We therefore have
[z2=123,2s=1] & T1 =T

A similar logic argument applies to the second multiplicity 2 case in Figure 11:
[z2=123,Zs=-1] & T3="Ta.

The third multiplicity 2 case is z1 =z2>z3 >0 < real T2 = T3. Demonstrate this by
starting with z1 = z2 > z3 > 0. Then the Tz and T3 formulas give T2 =Tz = Xs \/2_3, which
must be real because z3 > 0.

Alternatively, we can start with real T2 = Ts. Then the Tz and T3 formulas give

V21 73 + 5 \[23 = =z, + 23 + Zs \Jz3 = z; = z; AND T2=Ts=3s [z;

The value z:1 is always nonnegative real, so the equality /z; =+/z, implies z1 = z2> 0. That
T2 =Ts is given as real implies that z3 isreal and z3 > 0. Thus,z1=722>273>20 <
real T2 = Ts.

Each of the remaining Figure 11 relations for multiplicity 3 and for symmetry can be
demonstrated in similar fashion. A quartic equation is symmetric if for each depressed
solution Tn, another solution Th is its negative.

In summary, a quartic equation with multiplicity or symmetry has an Euler resolvent cubic
equation with a corresponding multiplicity or zero value among its three solutions zn.

Tables IV and V below demonstrate how the mitigation design works for the Example 2
multiplicity and Example 3 symmetry quartic equations.

Example 2 Quartic Equation with Multiplicity 3
The Example 2 quartic equation is

Zr—4273 4+ 6.67Z2-4.6 Z,+1.2 =0 with true solutions 1.2, 1, 1, 1.

This is a multiplicity 3 equation: three of four solutions equal the same real value, 1. Table
[V lists all of the pertinent parameters, calculated both without and with round-off error
mitigation. The table is simplified by omitting calculated values from the Figure 10 dashed
red box. These values apply only to quartic equations with symmetry, which is not a
property of Example 2. Therefore, the inequality |bi1| < Max(bik, biew) € in the Figure 10
dashed red box is FALSE, and the red box makes no change to any relevant parameter.
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Table IV. Calculated Parameters for Example 2 Quartic Equation with Multiplicity 3

Example 2 Quartic Equation: Zf—-4.27Z3 + 6.6Z2-4.6 Z,+1.2=0
with solutions 1.2, 1, 1, 1
Parameter Figure 2 Figure 1 Figure 10 Figure 9
Symbol Quartic- Cubic-Equation Final Final
Equation Algorithm Quartic-Equation Cubic-Equation
Algorithm (Value without Algorithm Algorithm
(Value without | error mitigation) (Value with error (Value with error
error mitigation) mitigation)
mitigation)
c _ - e=2"52= g=2752=
2.220446049E-16 | 2.220446049E-16
Az [-4.2] [-4.2]
Az [6.6] [6.6]
Ay [-4.6] [-4.6]
Ao [1.2] [1.2]
Asg - 4.2
Aze -- 6.6
A -- 4.6
Aok -- 1.2
Ao=0 FALSE FALSE
C -1.05 -1.05
Ce -- 1.05
b -0.015 -0.015
b2k - 19.83
b1 -0.001 -0.001
big -- 32.383
bo -1.875E-05 -1.875E-05
bok -- 18.169575
az -0.0075 [-0.0075] -0.0075 [-0.0075]
aze -- -- 9.915 [9.915]
a1 1.875E-05 [1.875E-05] 1.875E-05 [1.875E-05]
aig -- - 4.579575 [4.579575]
ag -1.5625E-08 [-1.5625E-08] -1.5625E-08 [-1.5625E-08]
aoE -- - 0.001011969 [0.001011969]
Calculations from the Figure 10 dashed red box are irrelevant and omitted here.
q 1.455880E-17 1.455880E-17
qgE -- 1.54305
gE € - 3.42626E-16
q reset -- 0
r -3.777899E-20 -3.777899E-20
I'E -- 0.006261438
IE € - 1.39032E-18
r reset -- 0
R=r2+g3 1.427252E-39 0
Re 0
RI<Ree FALSE
q=r=0 TRUE
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Table IV Calculated Parameters for Example 2 Quartic Equation with Multiplicity 3

(Page 2)
Example 2 Quartic Equation: Z}—-4.27Z3 + 6.6Z2-4.6 Z,+1.2=0
with solutions 1.2, 1, 1, 1
Parameter Figure 2 Figure 1 Figure 10 Figure 9
Symbol Quartic-Equation Cubic-Equation Final Final
Algorithm Algorithm Quartic-Equation Cubic-Equation
(Value without (Value without Algorithm Algorithm
error mitigation) error mitigation) (Value with error (Value with error
mitigation) mitigation)
Numerical Recipes

A 4.227596E-07 .
t -4.227251E-07 Specf‘lrcj"f)e 2
tox 2.113626E-07 a=r=
y2 3.661504E-07
tax 2.113626E-07
71 [0.002499577] 0.002499577 [0.0025] 0.0025
X2 [0.002500211] 0.002500211 [0.0025] 0.0025
y2 [3.661504E-07] 3.661504E-07 [0] 0
X3 [0.002500211] 0.002500211 [0.0025] 0.0025
z -1 -1
d 6.251057E-06 6.25E-06
Sz1 0.049995773 0.05
D 0.010000846 0.01
Sb 0.100004227 0.1
Y1 0 0
Tx1 0.15 0.15
Tx2 -0.050008455 -0.05
D -5.36219E-11 0
SD 7.322698E-06 0
Ys 7.322698E-06 0
Tx3 -0.049995773 -0.05
Txa -0.049995773 -0.05
X1 1.2 1.2
X2 0.999991545 1
Y1 0 0
X3 1.000004227 1
X4 1.000004227 1
Ys 7.322698E-06 0

The second and third table columns are the “without mitigation” columns. They list

parameters calculated by the Figure 2 quartic-equation algorithm and Figure 1 cubic-
equation algorithm. The fourth and fifth columns list parameters calculated by the final
algorithms in Figures 10 and 9 with mitigation. Entries enclosed in square brackets are
input values, either from the user or from another algorithm in the table.

The two quartic-equation algorithms produce identical values for the resolvent-cubic-
equation coefficients: az =—-0.0075, a1 = 1.875x107>, ao = —-1.5625x1078. The respective
cubic-equation algorithms use the calculated coefficient values to solve the resolvent cubic
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equation. There, the true values of parameters q and r are both zero: q =r = 0. This case
(Special Case 2) implies that the depressed cubic equationis t3 = 0,n =1, 2, 3, and the

resolvent-cubic-equation solutions all equal the same real value: z1 =z2 =73 =-a2/3 =
0.0025.

Instead of zero, both cubic algorithms calculate the q and r values as round-off errors
q = 1.45588%x10717 and r = -3.7779x10720. The true value of R = r? 4+ g3 is zero, but the
Figure 1 cubic-equation algorithm calculates R = 1.42725x10739,

Because the calculated R is positive, the original Figure 1 algorithm uses Numerical Recipes
to complete the calculation, starting with the calculation of A (true value is zero):

A = (| +vR)"”

1/3
= (1-3.7779x1072| + v/1.42725x10739) " = (7.5558x10729)1/3 = 4.227596x10~7

The square root and cube root operations in the formula for A greatly magnify the round-
off errors of r and R. The Figure 1 and Figure 2 algorithms then go on to infect their
calculated solutions of the resolvent cubic equation and quartic equation with this
magnified round-off error. Instead of z1 = z2 = z3 = 0.0025, the calculated resolvent-cubic-
equation solutions are 0.002499577 and 0.002500211 £i 3.6615x1077. Instead of

1.2, 1, 1, 1, the calculated quartic-equation solutions are

1.2, 0.999991545140, and 1.000004227430+1i0.000007322698.

The algorithms with round-off error mitigation avoid these magnified errors. The Figure 9
cubic-equation algorithm calculates the error size parameters gt and rg, and finds that

lgl = 1.455880x10°7 < qre = 3.42626x10716 and
| = 3.777899x10720 < ree = 1.39032x10718.

The algorithm therefore resets both q and r to zero. It proceeds with Special Case 2 to
accurately calculate the resolvent-cubic-equation solutions. These are then used by the
Figure 10 algorithm to calculate accurate quartic-equation solutions.

Example 3 Quartic Equation Symmetry Condition
The Example 3 quartic equation is

Zr—873-5.8472+ 87.36 Z,+ 17.64 = 0 with true solutions 7, 4.2, 0.2 and -3.

This equation is symmetric: the quartic polynomial and the four solutions are symmetrical
about the value Z = Z¢ = 2. Table V lists all of the pertinent parameters, calculated both
without and with round-off error mitigation. The columns of the table correspond to those
of the previous table (Table IV) except that a sixth column has been added for the Figure 8
Final Quadratic-Equation Algorithm.
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Table V. Calculated Parameters for Example 3 Quartic Equation with Symmetry
Example 3 Quartic Equation: Zjf—-87Z3 -5.84Z2+ 87.36 Z,+17.64=0
with solutions 7, 4.2,-0.2 and -3

Parameter Figure 2 Figure 1 Figure 10 Final Figure 9 Final Figure 8 Final
Symbol | Quartic-Equation | Cubic-Equation | Quartic-Equation | Cubic-Equation Quadratic-
Algorithm Algorithm Algorithm Algorithm Equation
Algorithm
(Value without error mitigation) (Value with error mitigation)
€ e=2"52= e=272= e=2"52=
2.2204460E-16 | 2.2204460E-16 | 2.2204460E-16
As [-8] [-8]
Az [-5.84] [-5.84]
A [87.36] [87.36]
Ao [17.64] [17.64]
Ao=0 FALSE FALSE
Asg 8
Aze 5.84
Asg 87.36
Aok 17.64
C -2 -2
Ce 2
b2 -29.84 -29.84
b2k 53.84
b1 0 0
big 326.08
bo 121 121
bok 279.72
az -14.92 [-14.92] -14.92 [-14.92] [-14.92] =B
aze 26.92 [26.92] [26.92] =Bk
a1 254016 [25.4016] 25.4016 [25.4016] [25.4016] =C
aie 270.7532 [270.7532] [270.7532] =Ce
ao 0 [0] 0
ace 0 [0]
bigw 0
b2 <0 TRUE
la1/b3| < 1x10°8 FALSE
|b1] < Max(big, biew) € TRUE
reset b1 0
reset ao 0 [0]
lal] < aiee FALSE
q -16.26684444
r 59.8453357
r’+ g3 -722.9092147
Viete Special Case 1
2+ qg3<0 ao =0
0 0.422250267
01 0.140750089
02 -1.953645014
03 2.235145191
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Table V Calculated Parameters for Example 3 Quartic Equation with Symmetry

(Page 2)
Example 3 Quartic Equation: Z}-87Z3 -5.84Z2+87.36 Z,+17.64=0
with solutions 7, 4.2,-0.2 and -3
Parameter Figure 2 Figure 1 Figure 10 Final | Figure 9 Final Figure 8 Final
Symbol | Quartic-Equation | Cubic-Equation | Quartic-Equation | Cubic-Equation Quadratic-
Algorithm Algorithm Algorithm Algorithm Equation
Algorithm
(Value without error mitigation) (Value with error mitigation)

t1 7.986666667
tax -3.013333333
y2 0
tax -4.973333333
D 121
DE 1886.3056
Y [0] 0
Q 12.96
X1 [12.96] 12.96
X2 [1.96] 1.96
71 [12.96] 12.96 [12.96] 12.96
X2 [1.96] 1.96 [1.96] 1.96
y2 [0] 0 [0] 0
X3 [1.776357E-15] | 1.776357E-15 [0] 0
) -1 -1
d 3.481659E-15 0
Sz1 3.6 3.6
D 1.960000118 1.96
SD 1.400000042 1.4
Y1 0 0
Tx1 5.000000042 5
Txz 2.199999958 2.2
D 1.959999882 1.96
SD 1.399999958 1.4
Y3 0 0
Txs -2.200000042 -2.2
Txa -4.999999958 -5
X1 7.000000042 7
X2 4.199999958 4.2
X3 -0.200000042 -0.2
X4 -2.999999958 3

Both quartic-equation algorithms produce true values for the coefficients (az = -14.92,

a1 =25.4016,
cubic-equation algorithms.

ao = 0) of the resolvent cubic equation, which is solved by the respective

The resolvent-cubic-equation true solutions are z1 = 12.96,
72 = x2= 1.96, and z3 = x3 = 0. The constant coefficient value ao = 0 indicates that one
solution zn must be zero.

The Figure 1 cubic-equation algorithm without mitigation does not treat the case ao = 0 as
a special case, and so proceeds as usual. Instead of 0, the calculated z3 is the small error
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value z3 =x3 = 1.77636x10715, The parameter d = x2x3 + y2y2 in the quartic-equation
algorithm has true value 0, but is now calculated as d = 3.48x10715. This small error for d
is magnified when the two formulas D = xz + x3 — 22Vd and D = xz + x3 + 23Vd take its
square root. Both D values should be D = x2 = 1.96, but they are calculated as
1.960000118 and 1.959999882 (relative error ~ 6x1078). The resulting quartic-equation
calculated solutions Zn suffer a similar relative error.

Z1=7.000000042, Zz=4.199999958, Z3=-0.200000042, Z4+=-2.999999958

The algorithms with round-off error mitigation avoid these magnified errors. In solving the
resolvent cubic equation, the case ao = 0 is Special Case 1 in the Figure 9 algorithm. The
algorithm sets one solution to zero and invokes the Figure 8 quadratic-equation algorithm
to calculate the other two (12.96 and 1.96) as solutions of Z2 + a2Zn + ao = 0 (last column
of the table on the second page). The Figure 9 cubic-equation algorithm conveys these
three accurate solutions to the Figure 10 quartic-equation algorithm, which then accurately
calculates the quartic-equation solutions.

We have shown that the final algorithms in Figures 8, 9, and 10 eliminate round-off error
magnification in the first three example problems, but the algorithms address neither the
symmetry near-miss condition in Example 4 nor the magnification condition in Example 5.
Those two conditions are handled by post processing as described in the next two sections.
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V. CUBIC-EQUATION POST PROCESSING FOR SMALL MAGNITUDE SOLUTIONS

This section describes cubic-equation post processing to eliminate round-off-error
magnification for magnitude-condition equations: equations with at least two solutions
that differ significantly in magnitude. The cubic-equation algorithm provides good
accuracy for the larger-magnitude solution(s), but round-off error can swamp the smaller-
magnitude solution(s) as we will demonstrate. To correct this situation, post processing
applies the accurately-calculated, large-magnitude solution(s) to the cubic-equation
coefficients to extract accurate values of the small-magnitude solution(s). The post-
processing is summarized in a detailed calculation flow chart.

The cubic-equation post processing addresses not only the cubic-equation magnitude
condition, but also quartic-equation symmetry near-miss. The reason is that such a quartic
equation has a resolvent cubic equation with the magnitude condition. We work through
the Table [, Example 4 quartic equation to demonstrate.

Simple Example Calculations
A simple example demonstrates why the cubic-equation algorithm has difficulty with
extreme magnitude differences between equation solutions. Let the solutions z1, z2, and z3

of a cubic equation z3 +a2z2 + a1z, + ao = 0 be the three real values 2, 1, and 1x10717.
From Equations (2), the equation coefficients are

az = —(z1+ 22+ z3) = —(2+4+ 1+ 1x10717) = —(3+4+1x10717)
a1 = z1z2+z1z3+722z3 = 21+ (2+1)-(1x10717) = 2+ 3x10717
a0 = —Z1Z27Z3 = -2-1.1x10717 = -2x10717

The computer’s limited precision forces it to store az as —3 and a1 as 2. This limitation is
not a problem because the value ap = -2x10717 retains the needed information about the
small-magnitude solution z3 = 1x10717.,

The problem occurs in the cubic-equation algorithm with evaluation of parameters q and r:

a; a3 2 (=3 1

1379 73779 3

_a;a; —3a, a_% _ 2(=3) = 3(=2x10"") _ (=3  —6+6x107"7

6 27 6 27 6 +1

The last expression on the right shows that the true value of r is

-6+ 6x10”Y
r =
6
However, the computer with its limited precision first calculates the numerator

—6+6x10717 as —6. The calculated value of r becomes —6/6 + 1 = 0. At this point, all trace
of z3 = 1x10717 has vanished from the computer calculation. Withq=-1/3 and r = 0, the

+1=-1+4+1x10"7+1= 1x10717
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cubic-equation algorithm, Figure 9, proceeds with Special Case 4 to produce s = \/|3_q| =1,
V2=txxe=0, t1i=s=1, ts=—-s=-1,
z1=t1—a2/3=1-(-3)/3 =2,
Z2=X2=tx—a2/3=0+1=1,
z3=xX3=tx—az/3=-1+1=0.

The two larger solutions are accurate, but z3 cannot possibly be 0 because ao is not 0.

Realizing that the Figure 9 algorithm produces two solutions, z1 and z2 = x2, of the same
order of magnitude and the third one, z3 = x3, much smaller, we can safely assume that z1
and z are accurate and, therefore, accurately recalculate z3 by using the constant
coefficient ao = —z1z2z3:

ap —2x10717

= = =1x107"".
Z3 lez 2'1 %

To describe the general case, we relabel solutions from the Figure 9 algorithm as za, zs, and
zc where the indices for the new labels indicate the order of absolute value: |za| > |zs| > |zc|.
Equations (2) for the cubic-equation coefficients become

az = —(za + zB + Zc) a1 = ZaZB + ZaZc + ZBZc a0 = —ZAZBZC. (53)

When |za| and |zs| are of the same order of magnitude, but |zc| is much smaller, then the
calculated za and zs values are accurate, but zc is suspect. Post processing applies the
Equation (53) formula for ao to recalculate zc from ao, za, and zs:

- 54
Zc = ZAZB. (54)

Unlike the zc calculated by the Figure 9 algorithm, this zc is recalculated directly from ao
using the accurately calculated za and zs values.

This approach is the same applied in the Numerical Recipes algorithm (Figure 4) to solve
the quadratic equation Z2 + BZ,, + C = 0. Coefficients B and C are related to the two
solutions Z1 and Z2 by

B =—-(Z1+7Z2) and C="71Z2. (55)

For two solutions of unequal magnitude, the solutions must be real, the determinate

D = B2 - 4C is positive, and parameter Q = (|B| +vD)/2 is the absolute value of the larger-
magnitude solution Za. The sign of Za is the opposite that of B, and the smaller magnitude
solution is calculated as Zg = C/ Za.

A related approach applies to cubic equations when the magnitude of one solution from the
Figure 9 algorithm is significantly greater than that of the other two, that is, |za| >> |zs| >
|zc|. This time the accuracy of the Figure 9 algorithm can be trusted only for the largest
magnitude value za, and post processing develops a quadratic equation Z2 + BZ, + C=0
to accurately recalculate the values of zs = Z1 and zc = Z2. We apply the accurate solution
za to extract the values of B and C from the cubic-equation coefficients ao and a1. From
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Equation (55), C = Z1 Z2 = zB zc. Equation (53) gives ao = —zazpzc. We therefore divide —ao
by za to obtain C:

C =-ao/za. (56)

This value of C = zs zc¢ and the solution za allow us to extract the formula for B = —(zs + zc)
from a1 by using the Equation (53) expression for a1:

a1 =zazp + zaZc + zpZc = zA(zB + 2c) + C=-zaB+C =
B=(C-a1)/za (57)
Post processing uses (56) and (57) for B and C, then solves the associated quadratic

equation. The resulting quadratic-equation solutions are the recalculated values of the
cubic equation’s two smaller-magnitude solutions zs and zc.

Consider the following example of a cubic equation with solutions za = -3, zs, = 2x10717,
and zc = 1x10717. The computer-stored, cubic-equation coefficients are

az =3 a1 = -9x107V a0 = 6x10734
The Figure 9 cubic-equation algorithm calculates the solutions as 0, 0, —3.
The calculated values zg = zc = 0 cannot be correct because ao # 0. Our post-processing
calculates C and B as
C= —ao/za = —(6x10734)/(-3) = 2x10734
B=(C-a1)/za = [2x10734— (-9x10717)]/(-3) = —3x10717

The recalculated values of zg and zc are the two solutions of
Z2 —3x10717 Z, + 2x10734 = 0.

The quadratic formula is adequate to accurately produce the proper solutions for this
particular case:

Zgc = %(—BiM) = %(3x10_17i\/9x10‘34 — 8x107%4)

1 1
Zg = §(3X10—17 + 1x10717) = 2x107Y Zc = E(3X10_17 — 1x1071Y7) = 1x107Y

Cubic-Equation Post-Processing Algorithm
In principle, post processing is quite simple. The Figure 9 cubic-equation provides its
solutions za, zs, and zc of the cubic equation z3 + a2 z2 + a1z, + ao = 0 where |za| > |zg| > |zc|.

o [f|za] >> |zs|, then za is real and post processing recalculates zg and zc as the
solutions of Z2 + BZ,, + C = 0 where

C=-ao/za and B=(C—a1)/ za.

e Otherwise, if |z| >> |zc|, then zc is real and post processing recalculates real zc as
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dg

Zc =

ZAZB.

The actual cubic-equation post processing algorithm, Figure 12, is more complicated. It
addresses the specific circumstances that trigger solution recalculation and the mechanism
for relating za, zs, and zc to the Figure 9 algorithm outputs z1, x2, X3, y2.

The post-processing inputs are the cubic-equation coefficients az, a1, and ao, the associated
error size parameters azg, aig, and aog, and the Figure 9 outputs z1, X2, X3, and y2. Post
processing also utilizes a stored adjustable constant { = 0.345 for determining whether
solutions zg and zc are to be recalculated. Post processing recalculates both zg and zc if

|zB| < € |za|. It recalculates only zc if |zc| < & |za| < |zB|. A -value of 1 implies that zs and zc
are always recalculated unless they have the same absolute value as za. A {-value of 0
implies that zs and zc are never recalculated. The theoretical range of C is 0 <{ <1, but the
Section X error analysis shows that the selected value £ = 0.345 provides the best solution
accuracy for our mitigation design.

The post-processing first step is calculating the absolute values of the Figure 9 solutions:

Zim = 1241, Zom = 25| = /X% +y3, Z3m = |z3]| = /Xg +y3.

The algorithm then branches on the logical variable MIN(z1wm, Z2m, Z3m) < £ MAX(Z1Mm, Z3M).
The algorithm never explicitly evaluates za, zs, and zc (which are generally complex), but
rather applies the corresponding solution components z1, x2, X3, and y2 as appropriate.
Note that |zc| = MIN(z1m, Z2m, z3m), and |za| = MAX(zim, z3m). The greatest magnitude
solution za equals either z1 or z3 because z1 is the greatest real solution and z3 <z2 <z1
wheny2 = 0.

If MIN(z1m, Z2m, z3m) <  MAX(z1M, Z3M) < |zc| < C |za|, then at least one solution requires
recalculation.

Then if y2 # 0, solutions z2 and z3 are a complex conjugate pair, and there are only two
possibilities:

1 zim > z3m. In this case, the greatest magnitude solution is the real value za = xa = 71,
and the complex conjugate pair z2 and z3 need to be recalculated using a quadratic
equation.

2 Otherwise, za and zp are the complex conjugate pair zz and z3. The small-magnitude
solution zc = z1 is recalculated via Equation (54).

dp dp

2
Z, = — = — = —a /X .
2 2 0 2M
Z3Z73 X5ty
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Figure 12 Cubic-Equation Post-Processing Algorithm

Post -Processing Constant: £ = 0.345

Inputs: For the cubic equation z +a,z2 +a, zn+a, =0,
1) thereal coefficients a,, a;, and a,and error size parameters azg, aig, aoe
2) realvalues z, x,, X, y, as calculated by the Figure 9 algorithm so that zi, z,=x,+ iy,, z,=x,~ iy,
are the three solutions.
Outputs: Recalculated real and imaginary component (z,, x,, X5, and/or ¥2) of any solution z» such that
|zn| < € Max(|z1], |z3))-

dz, a1, Ao, A2E, A1E, ACE, Z1, X2, X3, Y2

7iM = |Z1|, Zam = /X3 + yZ, z3m = /X3 +y3

False

No recalculated

i False True
(_EXIT )  solution y,=0

False @

True
X, =12, False Ty > ZM True
/ Z, = _ao/X%M /

False

False Zow > Zomt

False S False

True {m_ & Zou True
/Zl = _ao/(xzx3)/ True /Xz =-ay/(2;%;) /
/ X, = _ao/(le3)/ /

C=-ay/x, B=(C-a)/xa X, = MAX([x,], [a,])

C ! (agg + IClxaE) B 1( +a°E+|B+C| )
=—1(a X =——I|a — —x

E |XA| OE AE E |XA| 1E |XA| XA AE

e Solve a quadratic equation to recalculate the
two smaller-magnitude solutions.
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Figure 12 Cubic Equation Post Processing Algorithm (Page 2)

False

Quadratic Equation Algorithm, Figure 8
Inputs: B,C, By, C;  Outputs: x ,=X1, X, =X, y2=Y

False

Z, =X, X, =X, X3 =X, Z, = Xql, X, = Xq2, X3 =X, Z, = XA, X2 = Xq1, X3 = Xq2

qv

: 71, X2,X3,y2 ;

If y2 = 0, then all three solutions are real, and the algorithm logic determines which of four
possible orders applies among z1wm, Z2m, and z3m.

ZC ZB ZA
1| zim < Z2M < Z3um 71 X2 X3
2| z2m<zZim <Z3Mm X2 71 X3
3| zam <Z3m <7ZiMm X2 X3 71
4| z3m <z2m <Zim X3 X2 Z1

Variable xa is assigned to za, which is either x3 or z1. The algorithm determines whether
|zB| > C |za| for each possible order. If so, then only solution zc is recalculated via
zc = —ao/(zazs), Equation (54).

Otherwise, both zp and zc are recalculated by solving a quadratic equation. The algorithm
calculates the quadratic-equation coefficients C and B via Equations (56) and (57) with za
replaced by its equivalent xa:

C=-ao/xa and B=(C-a1)/xa (58)
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The quadradic-equation algorithm, Figure 8, also requires the error size parameters Ce and
Be. To find Cg, take the partial derivatives of C with respect to ao and xa.

= |6C N | ac _agg | lagl
E— dag ApoE %A XAE ™ Xi XAE
Ce = — (aog + |C|xaE) (59)

|xAl

The values of ao, aok, and xa are all known, but the error-size parameter xat is not. We know
that xa is the real, greatest-magnitude, accurately-calculated solution of the cubic equation.
So, one option is to just set xae = [xa|. Another is to set xae = |az| because

=—(z1+z2+723)=—(xXa+zZB+ 2c) = —

when [xa| >> |zB| and [xa| >> |zc|. This condition is the primary reason for performing the
post processing. Because we want xak € to be an easily-calculated, reasonable, upper bound
of the round-off error in xa, we opt to calculate xak as

xaE = MAX(|xal, [az]). (60)

Derive the formula for B by again taking partial derivatives of B in Equation (58) with
respect to a1, ao and Xa.

. |aB L[Boc) 9B 9B aC
E = (a1 E T 3C 9agl PE T |9x, T 9C ax,l AE
1
BE (alE + — |B + — XAE) (61)
[xal | AI

After the post-processing algorithm executes Equations (58) to (61) to obtain B, C, Bg, and
C, it checks whether |B| > Bee and |C| > Cee. That s, it checks whether B and C have
absolute values that exceed their upper-bound, round-off error magnitudes. This step is
necessary for cubic equations that are a resolvent cubic equation of a quartic equation, the
quartic equation has multiplicity or multiplicity near miss, and the cubic coefficient As has a
very large absolute value. In such a situation, round-off error may dominate B and/or C,
and solutions recalculated with the quadradic algorithm would be less accurate than the
original calculated solutions. Therefore, if [ |B| > Bee¢ AND |C| > Cee | = FALSE, post
processing performs no recalculation, and it simply returns the solutions calculated by the
cubic-equation algorithm.

The usual situation is [ |B| > Bee AND |C| > Cee | = TRUE, and post processing invokes the
Figure 8 quadratic-equation algorithm. The Figure 8 outputs xq1, Xq2, and y2 are
components of cubic-equation solutions z = xq1 + iy2 and zc = Xq2 — iy2. The imaginary
component y2 is nonnegative. If y2 = 0, then xq1 > Xq2.

Finally, post processing assigns the real components xa, Xq1, Xq2 of the cubic-equation
solutions to z1, X2, and x3 where z1 is the greatest real solution. Recall that the real solution
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xa is the greatest-magnitude solution, which must equal either z1 or x3. If y2 # 0, then
Z1 = Xa, and X2 = X3 = Xq1 = Xq2. Otherwise, y2 = 0 and z1 is the greater of xa or xq1. If
XA > Xq1, then z1 = xa, X2 = Xq1, and x3 = Xq2. Otherwise, z1 = Xq1, X2 = Xq2, and X3 = Xa.

Quartic-Equation Symmetry Near Miss (Table I, Example 4)

Solving the Example 4 quartic equation with the symmetry near-miss condition
demonstrates the operation and effectiveness of cubic-equation post processing. Cubic-
equation post processing is relevant because a symmetry-near-miss quartic equation has a
resolvent cubic equation with the magnitude condition. If a quartic equation is perfectly
symmetric, then the resolvent cubic equation has at least one solution equal to zero. The
resolvent cubic equation therefore has a constant coefficient ap = 0, Special Case 1. If the
quartic equation is a symmetry near miss, then the resolvent cubic equation has a solution
of very small magnitude relative to the greatest-magnitude solution. That is, the resolvent
cubic equation has the magnitude condition and needs cubic-equation post processing.

The Example 4 quartic equation is

| Z¢—7.9999999 73 — 5.84000082 Z2 + 87.35999958 Z,+ 17.64000882 = 0 |

with true solutions 7, 4.2, -0.2000001, and —3. This example 4 equation is a modification of
the Example 3 quartic equation

7487358472+ 87.367Z,+17.64=0

with true solutions 7, 4.2, —0.2 and —3 and with symmetry about the value Z = Z¢ = 2.

When we use cubic-equation post processing, the solutions of the Example 4 symmetry-
near-miss equation are calculated accurately: solution relative error is less than 10716,
Solution relative error without cubic-equation post processing is on the order of 10 7.

EXAMPLE 4 CALCULATED SOLUTIONS
WITH AND WITHOUT CUBIC-EQUATION POST PROCESSING

with 7.000000000000  4.200000000000 —-0.200000100000 —3.000000000000
without 7.000000017147  4.199999982853 —0.200000117147  -2.999999982853

Table VI, which is over two pages long, lists all of the pertinent Example 4 parameters,
calculated both with and without cubic-equation post processing. The values listed in the
second column are those from the Figure 10 quartic-equation algorithm with no post
processing; values listed in last column are those from the same algorithm with cubic-
equation post processing. Entries on each row of the table’s first page are the same for
these two columns. The third column corresponds to the Figure 9 cubic-equation
algorithm, which calculates solutions to the resolvent cubic equation. The fourth column
corresponds to the Figure 12 cubic-equation post-processing algorithm, which invokes the
Figure 8 quadratic-equation algorithm in the fifth column.
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Table VI. Calculated Parameters for Example 4 Quartic Equation with Symmetry Near Miss

Example 4 Quartic Equation:
Z%—7.9999999 73 — 5.84000082 Z2 + 87.35999958 Z,+ 17.64000882 = 0
with solutions 7, 4.2,-0.2000001, and -3
Parameter | Figure 10 Final Figure 9 Final Figure 12 Figure 8 Final Figure 10 Final
Symbol Quartic- Cubic-Equation | Cubic-Equation Quadratic- Quartic-
Equation Algorithm Post-Processing Equation Equation
Algorithm with Algorithm Algorithm Algorithm with
no Post Cubic-Equation
Processing Post Processing
[e=272= [e=272= [€ = 0.345] [e=272= [e=272=
2.2204460E-16] | 2.2204460E-16] 2.2204460E-16] | 2.2204460E-16]
As [-7.9999999] [-7.9999999]
Az [-5.84000082] [-5.84000082]
Aq [87.35999958] [87.35999958]
Ao [17.64000882] [17.64000882]
Ao=0 FALSE FALSE
Asg 7.9999999 7.9999999
Azg 5.84000082 5.84000082
Aig 87.35999958 87.35999958
Aok 17.64000882 17.64000882
C -1.999999975 -1.999999975
Ce 1.999999975 1.999999975
b2 -29.84000022 -29.84000022
bk 53.83999962 53.83999962
b1 -1.008000E-06 -1.0080000E-06
b1k 326.0799984 326.0799984
bo 121.0000055 121.0000055
bok 279.7200073 279.7200073
az -14.92000011 | [-14.92000011] | [-14.92000011] -14.92000011
azg 26.91999981 [26.91999981] | [26.91999981] 26.91999981
a1 25.40159945 [25.40159945] | [25.40159945] 25.40159945
aig 270.7532019 [270.7532019] | [270.7532019] 270.7532019
ao -1.5876E-14 [-1.5876E-14] [-1.5876E-14] -1.5876E-14
aoE 1.02715E-05 [1.02715E-05] [1.02715E-05] 1.02715E-05
Calculations from the Figure 10 dashed red box are irrelevant and omitted here.
q -16.26684499
qe 179.5058229
qg € 3.985830E-14
r 59.84533934
TE 1225.144945
;€ 2.720368E-13
R =r%24¢3 -722.909216
RE 289135.6698
Rl < Rge FALSE
q=r=0 FALSE
R=0 FALSE
r=0 FALSE
R>0 FALSE
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Table VI Calculated Parameters for Example 4 Quartic Equation with Symmetry Near Miss

(Page 2)
Parameter | Figure 10 Final | Figure9 Final Figure 12 Figure 8 Final Figure 10 Final
Symbol | Quartic-Equation | Cubic-Equation | Cubic-Equation Quadratic- Quartic-Equation
Algorithm with Algorithm Post-Processing Equation Algorithm with
no Post Algorithm Algorithm Cubic-Equation
Processing Post Processing
Viete
r2+qg3<0
0 0.422250244
01 0.140750081
02 -1.953645021
03 2.235145184
t1 7.98666681
tax -3.01333344
t3x -4.97333337
y2 [0] 0 [0]
Z1 [12.96000018] 12.96000018 [12.96000018]
X2 [1.95999993] 1.95999993 [1.95999993]
X3 [1.776357E-15] § 1.776357E-15 | [1.776357E-15]
g 0.345
Z1M 12.96000018
Z2M 1.95999993
Z3M 1.77636E-15
MIN (z1m, Z2m, Z3m) < { MAX(z1m, Z3Mm) TRUE (Recalculate small-magnitude solution(s))
y2=0 TRUE
Z1M > Z3M TRUE
XA 12.96000018
Z2M = Z3M TRUE
Zam > £ Zam FALSE (Recalculate two smallest-magnitude solutions)
C 1.225E-15 [1.225E-15]
B -1.95999993 [-1.95999993]
XAE 14.92000011
Ce 7.92556E-07 [7.92556E-07]
Be 23.14787019 [23.14787019]
|B| > Beg AND |C| > Cee TRUE (Solve quadratic equation)
D 3.841599726
Dg 90.73965108
ID| < De g FALSE
D>0 TRUE
y2=Y [0] 0
Q 1.95999993
B>0 FALSE
X1 =X1 [1.95999993] 1.95999993
X, =X2 [6.250000E-16] | 6.250000E-16
XA > Xql TRUE
Z1 [12.96000018] 12.96000018 [12.96000018]
X2 [1.95999993] 1.95999993 > | [1.95999993]
X3 [1.776357E-15] 6.250000E-16 [6.250000E-16]
y2 [0] 0 [0]
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Table VI Calculated Parameters for Example 4 Quartic Equation with Symmetry Near Miss

(Page 3)
Parameter | Figure 10 Final | Figure9 Final Figure 12 Figure 8 Final Figure 10 Final
Symbol Quartic- Cubic-Equation | Cubic-Equation Quadratic- Quartic-
Equation Algorithm Post-Processing Equation Equation
Algorithm with Algorithm Algorithm Algorithm with
no Post Cubic-Equation
Processing Post Processing
) -1 -1
d 3.4816594E-15 1.2249999E-15
Sz1 3.600000000 3.600000000
D 1.960000118 1.960000000
Sb 1.400000042 1.400000000
D<O FALSE FALSE
Y1 0 0
Tx1 5.000000042 5.000000000
Tx2 2.199999958 2.200000000
D 1.959999882 1.960000000
Sb 1.399999958 1.400000000
D<O0 FALSE FALSE
Y3 0 0
Txs -2.200000042 -2.200000000
Txa -4.999999958 -5.000000000
X1 7.000000017 7.000000000
X2 4.199999983 4.200000000
X3 -0.200000117 -0.200000100
X4 -2.999999983 -3.000000000

Entries enclosed in square brackets are input values, either from the user or from another
algorithm in the table.

With the coefficient inputs, As, Az, A1, Ao, the quartic-equation algorithm detects no special
cases, and so proceeds to calculate in straight-forward manner the coefficients az, a1, and ao
of the resolvent cubic equation and also the corresponding error size parameters azg, a1k,

and aok.

The cubic-equation algorithm takes over the parameter calculation with parameter q about
2/3 of the way down the first page of the table. The algorithm detects no special case, so
with R =12 4+ q3 =-722.9 (not positive), the algorithm proceeds with Viete to sety2 =0
and calculate the resolvent cubic equation’s three real solutions, whose values are listed
about 1/4 of the way down the table’s second page.

z1=12.96000018, z2=x2=1.95999993, and z3=x3=1.776357x1071°

The values y2 = 0, z1, X2, and x3 are boxed in red.

The second column of the table (quartic-equation algorithm with no post processing) uses
these solutions of the resolvent cubic equation.
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The ultra small magnitude of the third solution x3 = 1.77636x10~1> makes its accuracy
suspect. In fact, most of this x3 value is round-off error.

Cubic-equation post processing remedies the problem. The cubic-equation algorithm
passes on to the post-processing algorithm the values of az, a1, ao, azg, aig, and aoe on the
first page of the table, as well as its solution values y2, z1, x2, and x3 boxed in red.

Post processing’s first step is calculation of the absolute values of the three solutions:
znM = |zn|. In this particular case, the absolute values are in value order (greatest to least)
and equal to the solutions themselves.

Next, the algorithm finds that
MIN(z1m, Z2m, Z3m) = z3m = 1.77636x10715 < £ MAX(z1m, z3m) = 0.345 x 12.96000018,

so, some form of solution recalculation is required. The conditions y2 = 0 and zim > Z3m
imply that solution z1 has the greatest absolute value of three real solutions. Therefore, set
xa=71=12.96000018. Also, z2m > z3Mm, S0 Z2 = x2 has the second greatest magnitude, and
z3 = x3 has the least. Because z2m does not satisfy zam = 1.96 > £ zim = 0.345x12.96, both z2
and z3 will be recalculated as solutions of a quadratic equation.

Post processing proceeds to calculate the quadratic-equation coefficients C and B and error
size parameters xag, Ce and Be. Coefficients C and B have absolute values greater than their
error upper bounds Bk ¢ and Ck g, so the algorithm invokes the quadratic-equation
algorithm, whose parameters are listed in the table’s fifth column.

The quadratic-equation algorithm, finding there are no special cases and that discriminate
D = B2 - 4C is positive, proceeds to calculate the two real quadratic-equation solutions
using the Numerical Recipes process. The solution components, xq1 = X1, Xxq2 = X2, and

y2 =Y, are returned to so, cubic-equation post-processing algorithm.

The post-processing algorithm finds that y2 = 0 and xa = 12.96 > xq1 = 1.96, and so reports
back to the quartic-equation algorithm the components of the revised resolvent-cubic-
equation solutions as follows:

z1=12.96000018, x2=1.95999993, x3=6.250000x10716, y2=10

These values, at the bottom of page 2 of the table, are boxed in green. Recalculation does
not change the x2 value, but the accurate recalculated x3 = 6.25x1071¢ is less than half of the
original value of 1.78x10715. The original, incorrect value of the resolvent-cubic-equation
solution xs is the source of error in the quartic-equation solutions when no post processing
is used.

The recalculated resolvent-cubic-equation solutions boxed in green are reported back to
the quartic-equation algorithm, as reflected in the last column of the table and going
forward to page 3 of the table. Calculated solutions of the quartic equation in the table’s
last column are accurate with relative error less than 10716.
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Quartic-equation entries in the second column on page 3 of the table (no post processing)
reflect the original calculated values of the resolvent-cubic-equation solutions, boxed in
red. Relative error of these calculated quartic-equation solutions is on the order of 10 7.

There is one final note on our post processing. Recalculation did not change the value of
resolvent-cubic-equation solution x2 because the original value was already accurate. The
algorithm recalculates x2 because the stored parameter € = 0.345 is large, and

z2M = [X2| = 1.96 fails to exceed £ zivm = 0.345 x 12.96 = 4.47. The Section X error analysis
shows that a £ value of 0.345 minimizes error. The side effect of this large { is that solution
values calculated originally are sometimes accurate but are recalculated anyway.
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VI. QUARTIC-EQUATION POST PROCESSING FOR SMALL MAGNITUDE SOLUTIONS

This section expands the post-processing techniques from the last section to work with
quartic equations. Given the coefficients As, A2, A1, and Ao of the quartic equation

Zf + A3Z3 + A,Z2 + A1Zq + Ao = 0, the quartic-equation algorithm, Figure 10, calculates
the components X1, X2, Y1, X3, X4, Y3 of the four solutions Z1=X1+iY1, Z2=X2—-iY1, Z3=X3+iY3,
and Z4=Xs—iY3. If the accuracy of one, two, or three of the calculated solutions is suspect
because the solution absolute value is sufficiently small, then the post processing
accurately recalculates the suspect solutions. The post-processing design addresses the
magnitude-condition quartic equations like Table I, Example 5. We work through Example
5 to demonstrate the operation of the post-processing algorithm, Figure 13.

Quartic-Equation Post Processing Algorithm

The post-processing inputs are the quartic-equation coefficients As, Az, A1, and Ao, the
associated error size parameters Asg, Azg, A1k, and Aok, and the calculated solution
components X(1)=Xi, X(2)=Xz2, Y(1)=Y1, X(3)=X3, X(4)=X4, and Y(3)=Ys from Figure 10.
The algorithm also stores the constant { = 0.345, the same used in the Figure 12 cubic
equation post processing algorithm. Even though the imaginary components of Z2 and Z4
are —1Y1 and —iY3, the post processing algorithm sets Y(2)=Y(1) and Y(4)=Y(3). The
algorithm requires the nonnegative Y values.

To determine which solutions need recalculation, we need to place the four solutions in
order of their magnitudes (absolute values), or equivalently in order of the square of
absolute values. The algorithm starts by calculating Zsq(k) = |Zk/?, the square of absolute
value of each solution:

Zsq(k) =X2(k) + Y2(k), k=1to4 (62)

The next task is to relabel the Zsq(k) as Zmsq(k) so that the Zmsq(k) are in value order:
Zmsq(1) > Zmsq(2) > Zmsq(3) = Zmsq(4).

Additionally, we need an index function Iin(k) that associates each ordered Zmsq(k) with the

appropriate Zsq. That is, Zsq[Iin(K)] = Zmsq(k).

The following table provides an example to help clarify.

Table VII. Example of Solution Ordering

oo, | 5o [ w0 | st | | ST dtony | Mrfen
1 3x10 8 4x10 8 2.5x%x10715 1 49 4
2 3x10 8 —4x10 8 2.5x%x10715 2 2.5x%x10715 1
3 2x10 712 0 4x10 24 3 2.5 x 10715 2
4 7 0 49 4 4x10 24 3

The first column contains the input index Iin values in order 1 to 4. The next two columns
list the solution components, X(Iiv) and Y(Iiv), of an example quartic equation. Equation
(62) above gives the Zsq(Iiv) values in the fourth column. Think of Zsq(liv) as the input

function.
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Figure 13 Quartic-Equation Post-Processing Algorithm

Post -Processing Constant: { = 0.345
Inputs: For the quartic equation Zj + A;Z3 + A,Z2 + A Z, + A, = 0,
1) real coefficients A3, A,, A;, A, and error size parameters Asg, Azg, Aig, Aok

2) real values X(1), X(2), Y(1), X(3), X(4), and Y(3) as calculated by the Figure 10 algorithm so that
Z1=X(1) +iY(1), Z2 = X(2) —iY(1), Zs = X(3) +iY(3), and Zs = X(4) — iY(3) are the four solutions.

Outputs: Recalculated values X(1), X(2), Y(1), X(3), X(4), and Y(3) as required. Components of any
solution Zn are recalculted if |Zn| < £ Max(|Z1, |Z2], |Z3], |Z4).

As, A, A, A, Asg, Az, Atg, Aok, X(1), X(2), Y(1), X(3), X(4), Y(3)
I
Y(2)=Y(), Y(4)=Y(3), Zsq(k) = X2(k) + Y2(k), k=1to4
I
Value-Ordering Routine, Figure 14

Inputs: N =4, Xin(k) = Zsq(k), k=1to 4 Outputs: Zmsq(k) = Xour(k), In(k), k=1to N

|
ZSQ,TH = Zmsq(1) C?

False Zusa(4) < Zgg True

No solution
EXIT requires |
Xm(k) = X[In(K)], Ym(k) =Y[In(k)], k=1to 4

recalculation.
ZMSQ(Z) < ZSQTH

Use a cubic equation to recalculate three
smaller-magnitude solutions.

X1=Xm(1), Y1=0, a0 = —Ao/X1, a1 = (a0 — A1) /X1
az = (a1 — A2) /X, Xie = MAX( X1/, Aze)

Aoe

1 1 ag
o = |X_1|(AOE +laolXip),  a;p = |X_1|(A1E + X, | + )

al + X_ XIE)

)

Atg | Aok

(g +2ae | Boe e
Ap = — A 20
U IX T XE

X X}

a, +

Cubic-Equation Algorithm, Figure 9

Inputs:  a, a;,a; a, a;p g

Outputs: X2=12z,, X3=X,, X4 =X,, Y3=y,

®
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Figure 13 Quartic Equation Post Processing Algorithm (Page 2)

®
Solve a quadratic equation to recalculate the

two smaller-magnitude solutions.
True

False
X1=X,(1), Yi=Y,(1), X2=Xy(2),
Recalculate
the P12 = X1X2 +YZ, P12e = MAX(|P12|, AzE)
llest-
smallest S12= X1 + Xz, S128 = MAX([S12], Ase)
magnitude
solution. C=A,/ P, B = (A1+ CS12)/ P12
Ys=0 Piop
Ce = IC| (1 + )
’ |Pra|
True 1 S S
|P12| P12 P12
False |
X1 =Xz =X, (1) Quadratic Equation Algorithm, Figure 8
Yi=Y,(1), Xs=Xu3) Inputs: B, C, By, C;
Outputs: X3, X4, Y3

X1 =Xy(2), X2=Xy,(3),
Yi=Yy(2), Xs=X,(1)

Xy = AO/[(X1X2 + Y12)X3]

/ X1, X2, Y1, X3, Xs, Y3 /

The first output function is Zmsq(lout) where the Zmsq are the same values as the Zsq but in
proper order. The index function Iin(Iour) in the last column is also an output function. Itis
defined so that Zsq[Iin(Iout) ] = Zmsq(lout) for all Iour.

We obtain the Zmsq(k) and Iin(k) functions from the generic ordering routine in Figure 14
below. The inputs are N = 4 and Xin(k) = Zsq(k); the outputs are Zmsq(k) = Xour(k) and
Iin(k).

The greatest Zmsq is Zmsq(1). This value is the standard against which the other Zmsq(k) are
compared to determine whether the corresponding solution Zm[Iin(k)] requires
recalculation. Figure 13 post processing calculates the threshold value

Zsq tn = Zmsq(1) C2. (63)
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Figure 14 Value-Ordering Routine

Inputs: N = number of elements in the input and output arrays
Xin(k) = array of values to be ordered fork=1to N

Outputs: Xour(lour) = array of Xin values ordered from greatest to least for Iour=1to N
Iin(lout) = array of order index values such that Xin[Iin(Iour)] = Xour(lout)

N, Xin(k) fork=1to N
|

Outer loop is the output index lour _ _ True value indicates that
Liy() =TRUE, k=1to N Xin(k) has not yet been
Loop ordered.
Iour=1to N
k=1

Search for least index
value k such that

Lin(k) = TRUE. Set Q o True

I (Iyyp) =k and |

XourUour) = Xy (k). Do While False InUour) =K XoyrUoyr) = Xin(K)
These are initial trial 1<k<N k=N

values for Iour. T

.Se.t.k=. N to exit this K=—k+1
initiating search.

k=1y(yy) +1

Proceed to next valid
index k = [y (Ioyp) + 1.
Search all remaining k

with L (k) = TRUE. <N(k) True
If Xin(k) > Xour(lout), Fal
set I;y(Ipyp) =k and Do While alse False

Xour(Toyr) = Xy (K). k<N
After the index k
values are exhausted,
Iy (oup) and Xoy:Tour) Iin(Ioury =k, Xour(lour) = Xin(k)
are the desired |

outputs for lour.

True

k=k+1

Set
L [y (our)] = FALSE,

and proceed to next
Ioyr value.

L y[In(Iour)] = FALSE

Xoyr(lout), In(lout) for Iour =1to N
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The branch, Zmsq(4) < Zsq H, checks whether the smallest Zmsq, Zmsq(4), is less than the
threshold. If not, then all Zmsq are sufficiently large that no recalculation is necessary, and
the algorithm exits. Otherwise, some form of recalculation is required. In that case, the
algorithm assigns the ordered solutions Zm(k) their real and imaginary components using
the integer function Iin(k):

Xm(k) =X[Iin(k)], Ym(k) = Y[Iin(k)] k=1to 4. (64)
where Zm(k) = Xm(k) + iYm(k) and Zmsq(k) = | Zm(k) |2.

The algorithm then works its way through a series of branches to determine which of the
solutions Zm(k) require recalculation. The second greatest Zmsq is Zmsq(2). If

ZmsqQ(2) < Zsq th, then Zm(2), Zm(3), and Zm(4) all require recalculation by solving a cubic
equation. Otherwise, if Zmsq(3) < Zsq tx, then Zm(3) and Zm(4) require recalculation by
solving a quadratic equation. Otherwise, only Zm(4) requires recalculation.

Use a Cubic Equation to Recalculate Three Small-Magnitude Solutions
Suppose Zmsq(2) < Zsq tH, so that Zm(2), Zm(3), and Zm(4) all require recalculation by
solving a cubic equation. The greatest-magnitude solution Zm(1) = Xm(1) +iYm(1) is
accurate where components Xm(1) and Ym(1) are known from Equation (64):
Xm(1) =X[Iin(1)] and Ym(1) = Y[Iin(1)]. This solution must be real because
Zmsq(2) < Zsqn < Zmsq(1). Thatis, Zm(1) = Xm(1). The solution Zm(1) components are
relabeled

X1=Xm(1), Y1=0, (65)

and we recalculate the components of the three other quartic-equation solutions as the
components of the three solutions of a cubic equation z3 + a2z2 + a1 za+ao0 = 0.

Xe=z1 X3=x2 X4=x3 Y3z=yo (66)

The algorithm generates the cubic-equation coefficients az, a1, and ao from the values of X1,
Y1=0, and the quartic-equation coefficients Az, A1, and Ao. Derivation of the az, a1, and ao
formulas starts with Equations (3) and (66):

az = —(z1+ X2 +Xx3) = —(Xz2+ X3+ X4) (67)
ar= zi(x2+x3) +xex3+ys = Xo(X3+ X4) + XaXa + Y2 (68)
a0 = —z1(x2x3 + y3) = —X2(X3Xs + Y2) (69)

The quartic-equation coefficients are related to the solution components by the check
equations, Equations (19) to (21) with Y1=0.

Az = XiXz + (X1+X2)(X3+X4) + XsXa + Y2 = Xi(X2+X3+Xs) + X2(X3 + Xa) + X3X4 + Y2
A1 = [ XiXe(X3+X4)+(XsXa+YH) (X1+X2) = —Xi[X2(X3+Xa)+X3Xa+YZ] — Xo(X3X4+YZ)
Ao = XiXz2(X3X4+YZ)

These expressions for Az, A1, and Ao combine with Equations (67) to (69) to produce

Ao = —Xiao, A1 =-X1a1 + ao, Az = —Xiaz + ai.
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Now these three equations combine to produce the post-processing expressions for the
cubic-equation coefficients ao, a1, and az:

ao=-Ao/X1 air=(ao—A1)/X1 az=(a1—A2)/X1 (70)
In addition to the three coefficients ao, a1, and az, the Figure 9 cubic-equation algorithm also

requires the associated error size parameters aog, aig, and aze. Obtain them by first
expanding the equations in (70).

Ag A1 Ao Ay A1 A
ap = X, a; = <X1 + X2> a, = <X1 +Xz + X3
Calculate the error size parameters in the usual way by taking partial derivatives.
aao aao Aoe | 1Al
A Xig ==——+—X
agg = A, oE T X, T X + XZ “iE
1
aoe = 757 (Aoe + |201X1E) (71)
X4
6a1 6a1 6a1 A Ao |A1  2Ag
= A A X = — 4 — — 4 —
AE = aA1 1E T aAO oE T 6X1 1E X, X2 X2 X3 1E
! <A pRoe o 4 200y ) (72)
a a;+—
AL TR R
aaz A aaz A 6a2 A 6a2 X
d2E = aAz 28 T 6A1 1E T aAo oE T 6X1 1E
Ae A | Ae  [Az | 2A;  3A
==+ S+t
Xi T XE X XE Xy XF T
1 AlE Aok 31
A +—+|a, +=— X 73
A = |X1| < ZE |X1| X% a; X Xz 1E ( )

The constituent values of X1, A2k, A1k, Aok, az, a1, and ao are known, but X1k is not. We know
that X1 is the real, greatest-magnitude, accurately-calculated solution of the quartic
equation. So, one option is to just set Xie = |X1|. Equation (14) for A3z also suggests the
option to set X1t = |As| because

= —(Z1+Z2+4Z3+7Z4) = —[Z1+Zm(2)+ZM(3)+ Zm(4)] = -Z1=—-X1

when |Z1| = [X1| >> |Zm(2)| = |Zm(3)| = |Zm(4)|. This condition is the primary reason for
performing the post processing. Because we want X1k € to be an easily-calculated,
reasonable, upper bound of the round-off error in X1, we opt to calculate Xik as

Xie = MAX([X1|, Ase) = MAX(|X1], |A3|). (74)
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To recalculate three small-magnitude solutions using a cubic equation, the algorithm
executes Equation (65) for X1 = Xm(1) and Y1 = 0, Equation (70) for ao, a1, and az, Equation
(74) for X1k, and Equations (71) to (73) for aog, aig, and aze. It then invokes the Figure 9
cubic-equation algorithm, whose outputs z1, X2, x3, and y2 provide the components of the
recalculated, small-magnitude, quartic-equation solutions in (66):

X2=12z1, X3=x2, Xa=x3, Y3=y2

Use a Quadratic Equation to Recalculate Two Small-Magnitude Solutions

Suppose Zmsq(2) > Zsq tH, but Zmsq(3) < Zsq th so that Zm(3) and Zm(4) require recalculation
by solving a quadratic equation. The two greatest-magnitude solutions

Zm(1) = Xm(1) +iYM(1) and Zm(2) = Xm(2) —iYmM(1) are accurate where components Xm(1),
Xm(2), and Ym(1) are known from Equation (64): Xm(1) = X[Iin(1)], Xm(2) = X[Iin(2)],
Ym(1) = Y[Iin(1)]. The components of these two larger-magnitude solutions are relabeled:

X1=Xm(1), X2=Xm(2), Y1=Ym(1). (75)
Label the product and sum of Z1 and Zz as P12 = Z1Z2 and S12 = Z1 + Z2 and calculate them as
Piz=XiX2+Y? and Siz=Xi+ Xe. (76)

We find the two other quartic-equation solutions Z3 = X3 + iY3 and Zs = X4 — iY3 as the two
solutions of a quadratic equation Z2 + BZ, + C = 0 where coefficients B and C satisfy

B=—(Z3+Z4) =—(X3+X4) and C=7Z3Zs=X3Xs+Y;. (77)

The algorithm generates B and C from the values of X1, Xz, Y1, and the quartic-equation
coefficients A1, and Ao. Derivation of the B and C formulas starts with Equation (16) and

7).

A1 = —(Z1Z2273+ 7212224+ 7173724+ 7273724) = —Z1Z2(ZL3 + Z4) — Z3Z4(Z1 + Z2)
Ao = 71727374

These expressions for A1 and Ao combine with (77) to produce

Ao =7172C A1 = 7Z172B - C(Z1 + Z2).

Now these two equations combine with the definitions P12 =71Z2 and Si12=71+ Z2 to
produce the post-processing expressions for B and C:

C=Ao/P12 B = (A1+ CS12)/ P12 (78)

The algorithm calculates X, X2, and Y1 from (75), P12 and S12 from (76), and C and B from
(78).

In addition to the coefficients C and B, the Figure 8 quadratic-equation algorithm also
requires the associated error size parameters Cg and Be. Obtain them from (78) in the
usual way by taking partial derivatives.
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The last equation results from the fact that Aoe = |Ao| and Ao/P12 = C.

For the Be formula, first substitute Ao/P12 for C in the Equation (78) expression for B.
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The constituent values of X1, X2, Y1, A1, Ao, A1k, and Aok are known, but P12k and S12k are not.
We know that Z1 = X1+iY1 and Z2 = X2 — iY1 are the two greatest-magnitude, accurately-
calculated solutions of the quartic equation. So, one option is to just set P12e = |P12| and
S12e = |S12| where P12 = Z1Z2 and S12 = Z1 + Z2. Equations (15) for Az and (14) for As also
suggest the option to set P12 = |Az| and Si12e = |A3| because

A2 = Z1Zo+ 7173+ 7174+ 7273+ 7274+7374 =~ 7122 = P12 and
= —(Z1+Z2+7Z3+24) =~ —(Z1+Z2) =—-S12

when |Z1]| >|Z2| >> |Z3| > |Z4|. This condition is the primary reason for performing the
post processing. Because we want P12k € and Siz2k € to be easily-calculated, reasonable,
upper bounds of the round-off error in P12 and S12, we opt to calculate P12e and S12k as

P12 = MAX(|P12], |A2|) and S12e = MAX(|S12|, |A3|) =
P12E = MAX(|P12|, AzE) and S12E = MAX(|S12|, A3E) (81)

To recalculate two small-magnitude solutions using a quadratic equation, the algorithm
executes Equation (75) for X1, X2, and Y1; (76) for P12 and S12; (78) for C and B; (81) for P12k
and S12g; and (79) and (80) for Ce and Be. It then invokes the Figure 8 quadratic-equation
algorithm, whose outputs X3, X4, Y3 are the components of the recalculated, small-
magnitude, quartic-equation solutions Z3 = X3 +iY3 and Z4 = X4 —iYs.

Recalculate a Simple Small-Magnitude Solution

If Zmsq(3) is not less than Zsq th, then Zm(3), like Zm(2) and Zm(1), needs no recalculation;
only Zm(4) has so small an absolute value that it requires recalculation. Zm(4) is the only
solution whose absolute value is so small, so it must be real. The recalculated value will be
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Z4 = X4 — Y3 = X4, so the algorithm sets Y3 = 0. The value of Z3 = X3 + iY3 = X3 is likewise
real and is selected from Xm(3) and Xm(1) as follows.

If YM(1) > 0, then Zm(1) and Zm(2) are a complex conjugate pair, and Zm(3) is real. The
algorithm sets X1 = X2 = Xm(1), Y1 = Ym(1), and X3 = Xm(3).

If Ym(1) is not greater than 0, then it equals 0, and Zm(1) = Xm(1) is real. In that case,
solutions Zm(2) and Zm(3) are either both real, or they form a complex conjugate pair. The
algorithm accommodates either case by pairing Zm(2) and Zm(3) as output solutions Z1 and
Z2 and pairing the real solutions Zm(1) and Zm(4) as output solutions Z3 and Z4+. The output
real and imaginary components are calculated as X1 = Xm(2), X2 = Xm(3), Y1 = Ym(2), and
X3 =Xm(1).

The algorithm finally calculates X4 as

Xy = Ao/[(X: X, + YD)X3].

This expression is correct because Equation (17) gives Ao as Ao = Z1Z27374; Z3 = X3 and
Z4 = X4 are real; and the product Z1Z2 is X; X, + YZ.

This concludes the description of the Figure 13 quartic-equation post-processing
algorithm. We demonstrate its operation with the Table I, Example 5 quartic-equation with
the magnitude condition.

Example Magnitude-Condition Quartic Equation (Table I, Example 5)

The Example 5 quartic equation is

ZE-6.99970002 Z3 — 2.099860005965x10 3 Z2 + 4.20000104993x10 11 Z, — 2.1 x 10 725
=0

with true solutions: 7, —3x107%, 2x10 8, and 5x10 ~15. This is an extreme example of

the magnitude condition: the absolute values of the quartic equation’s four solutions differ

from each the other by many orders of magnitude. Solving this magnitude-condition

quartic equation demonstrates the operation and effectiveness of quartic-equation post
processing.

Solutions calculated with the Figure 2 quartic-equation algorithm (no round-off error
mitigation) are
7, —=3.00019431496x10 4, and 1.97157508097x10 8 + i2.41435601527x10 °.

Solutions calculated with the Figure 10 final quartic-equation algorithm, but without post
processing are

7, —=3.00000001152x10 4, 1.00010177917x10 8 and 1.00001391612x10 8

As expected, both algorithms calculate the large-magnitude solution, 7, accurately. The
calculated value of the second-greatest-magnitude solution, —3x10 74, is considerably more
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accurate when using the Figure 10 final algorithm. Without post processing, however,
neither algorithm had success with the two smallest magnitude solutions.

Table VIII, three and one-half pages long, lists all of the parameter values calculated by the
mitigation design for the Example 5 quartic equation. Each column corresponds to one of
the mitigation-design algorithms: Figure 10 quartic-equation algorithm, Figure 13 Quartic-
Equation Post-Processing Algorithm, Figure 9 Final Cubic-Equation Algorithm, Figure 12
Cubic-Equation Post-Processing Algorithm, and Figure 8 Final Quadratic-Equation
Algorithm. Entries enclosed in square brackets are input values, either from the user or
from another algorithm in the table.

Initial Solutions from the Quartic-Equation Algorithm

The Figure 10 quartic-equation algorithm, using the coefficient inputs, As, A2, A1, Ao, detects
no special cases, and so proceeds to calculate in straight-forward manner the coefficients
az, a1, and ao of the resolvent cubic equation. Also, the corresponding error size parameters
azg, aig, and aoe. The algorithm invokes the Figure 9 cubic-equation algorithm to solve the
resolvent cubic equation.

The cubic-equation algorithm takes over the parameter calculation with parameter q about
2/3 of the way down the first page of the table. The calculated absolute value of R = r24g3
is so small that R is reset to zero producing Special Case 3. All three solutions of the
resolvent cubic equation are real (y2 = 0), and two of the three real components z1, x2, and
x3 have the same value. In this case r is negative, so z1 and x2 equal each other. On the
table’s second page, the real components are calculated as z1 = x2 = 3.0627625056, and
only slightly smaller x3 = 3.0622374881.

The resolvent-cubic-equation solution components yz, z1, X2, and x3 are reported to the
Figure 12 Cubic-Equation Post-Processing Algorithm, which finds that the three solution
magnitudes are so close in value that no recalculation is necessary.

These same values of y2, z1, x2, and x3 are therefore used by the quartic-equation algorithm
to finish calculating the quartic-equation solution components: Y1, Y3, X1, X2, X3, and Xa.
Their values in the table are boxed in red. If there were no post processing, these values
would represent the final calculated solutions of the quartic equation.

The calculated values listed in the table for Txz, Tx3, X2, and X3 show an inconsistency:
values of depressed solutions Txz and Tx3 are displayed as equal to each other, but the
corresponding solutions X2 = Tx2 — C and X3 = Txz — C are not equal to each other. Because
the calculated solutions of the resolvent cubic equation reveal the multiplicity 2 condition
z1 = x2 with r <0, the quartic-equation calculated solutions should show a corresponding
multiplicity 2 condition: Txz = Tx3 = _\/X—3 and X2 =Xz = _\/X—3 - C.

9/24/2021 Page 65 of 136



Quartic-Equation Post Processing

Table VIII. Calculated Parameters for Example 5 Magnitude-Condition Quartic Equation

Example 5 Quartic Equation:
Z%—6.99970002Z3 — 2.099860005965x10 3Z2 + 4.20000104993x10 11 Z,—2.1 x 10 25=0
with solutions 7, 2x1078 and 5x10715 and -3x107%
Parameter | Figure 10 Final Figure 13 Figure 9 Final Figure 12 Figure 8 Final
Symbol | Quartic-Equation | Quartic-Equation | Cubic-Equation | Cubic-Equation Quadratic-
Algorithm Post-Processing Algorithm Post-Processing Equation
Algorithm Algorithm Algorithm
[e=272= [ = 0.345] [e=2752= [£ = 0.345] [e=272=
2.2204460E-16] 2.2204460E-16] 2.2204460E-16]
As [-6.99970002] [-6.99970002]
Az [-2.099860006] | [-2.099860006]
Aq [4.2000011E-11] | [4.2000011E-11]
Ao [-2.100000E-25] | [-2.100000E-25]
Ap=0 FALSE
Asg 6.99970002 [6.99970002]
Az 2.099860006 [2.099860006]
Axg 4.2000011E-11 | [4.2000011E-11]
Aok 2.100000E-25 | [2.100000E-25]
C -1.749925005
Ce 1.749925005
b2 -18.375524999
bk 36.748950137
b1 -42.876837299
big 128.623162701
bo -28.138326214
bok 112.546874587
az -9.18776249938 [-9.1877624994] | [-9.1877624994]
aze 18.374475069 [18.374475069] | [18.374475069]
a1 28.1383264898 [28.1383264898] |[28.1383264898]
aig 112.5468751378 [112.546875138]|[112.546875138]
ao -28.7253621366 [-28.725362137] | [-28.725362137]
aoE 172.3423256248 [172.342325625] |[172.342325625]
Calculations from the Figure 10 dashed red box are irrelevant and omitted here.
q -3.06270422E-08
qgE 75.0312501531
9g € FALSE
r -5.36459765E-12
I'g 344.6846529378
g € FALSE
R =r2+¢g3 5.02610450E-26
Rk 3.69840010E-09
IRl < Rge TRUE
R reset 0
g=0Orr=0 FALSE
g=r=0 FALSE
R=0 TRUE
(Special Case 3)
y2 [0] 0 [0]
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Table VIII. Calculated Parameters for Example 5 Magnitude-Condition Quartic Equation

(Page 2)
Parameter | Figure 10 Final Figure 13 Figure 9 Final Figure 12 Figure 8 Final
Symbol | Quartic-Equation | Quartic-Equation | Cubic-Equation | Cubic-Equation Quadratic-
Algorithm Post-Processing Algorithm Post-Processing Equation
Algorithm Algorithm Algorithm
s=,/—q 1.75005835E-04
r>0 FALSE
t1 1.75005835E-04
tax 1.75005835E-04
tax -3.50011670E-04
Z1 [3.0627625056] 3.0627625056 | [3.0627625056]
X2 [3.0627625056] 3.0627625056 | [3.0627625056]
X3 [3.0622374881] 3.0622374881 | [3.0622374881]
Z1M 3.0627625056
Z2M 3.0627625056
Z3M 3.0622374881
MIN (z1m, Z2m, Z3m) < { MAX(z1M, Z3m) FALSE (No Recalculation)
) -1
d 9.37890616195
Sz1 1.75007500000
D 12.24999996500
Sb 3.49999999500
D<O FALSE
Y(L)=Y1 0 [0]
Tx1 5.25007499500
Tx2 -1.74992499500
D 2.25015002E-08
SD 1.50005001E-04
D<O FALSE
Y(3)=Y3 0 [0]
Txs -1.74992499500
Txa -1.75022500500
X(DH)=X1 7 [7]
X(2)=Xz2 1.00010178E-08 | [1.0001018E-08]
X(3)=Xs3 1.00001392E-08 | [1.0000139E-08]
X(4)=X4 -3.00000001E-04 | [-3.000000E-04]
Y(2)=Y(D) 0
Y4)=Y(3) 0
Zsq(1) 49
Zsq(2) 1.00020357E-16
Zsq(3) 1.00002783E-16
Zsq(4) 9.00000007E-08
Zmsq(1) 49
Zmsq(2) 9.00000007E-08
Zmsq(3) 1.00020357E-16
Zmsq(4) 1.00002783E-16
Iin(1) 1
Iin(2) 4
In(3) 2
Iin(4) 3
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Table VIII. Calculated Parameters for Example 5 Magnitude-Condition Quartic Equation

(Page 3)
Parameter | Figure 10 Final Figure 13 Figure 9 Final Figure 12 Figure 8 Final
Symbol | Quartic-Equation | Quartic-Equation | Cubic-Equation | Cubic-Equation Quadratic-
Algorithm Post-Processing Algorithm Post-Processing Equation
Algorithm Algorithm Algorithm
Z.sQ TH 5.832225
Zmsq(4) < ZsqTH TRUE
Xm(1) 7
Xm(2) -3.00000001E-04
Xm(3) 1.00010178E-08
Xm(4) 1.00001392E-08
Ym(1) 0
Ym(2) 0
Yum(3) 0
Ym(4) 0
Zmsq(2) < ZsqtH TRUE
X1 7
Y1 0
ao 3.00000000E-26 | [3.0000000E-26] | [3.0000000E-26]
a1 -6.00000150E-12 | [-6.000002E-12] | [-6.000002E-12]
az 2.99980000E-04 | [2.9998000E-04] | [2.9998000E-04]
X1E 7
A0E 6.00000000E-26 | [6.0000000E-26] | [6.0000000E-26]
a1E 1.20000030E-11 | [1.2000003E-11] | [1.2000003E-11]
A2E 5.99960001E-04 | [5.9996000E-04] | [5.9996000E-04]
q -1.00006667E-08
qE 3.99986669E-08
lql < g FALSE
r -1.00009999E-12
TE 6.00000001E-12
Ir| < rge FALSE
R =r24q3 -3.00039853E-32
Re 2.40024001E-23
Rl < Rge FALSE
g=r=0 FALSE
R=0 FALSE
r=0 FALSE
R>0 FALSE
0 3.14141945432
01 1.04713981811
02 -1.04725528429
03 3.14153492050
t1 1.00013333E-04
tax 9.99933333E-05
t3x -2.00006667E-04
V2 0 [0]
71 2.00000001E-08 | [2.0000000E-08]
X2 4.92168155E-15 | [4.9216816E-15]
X3 -3.00000000E-04 | [-3.000000E-04]
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Table VIII. Calculated Parameters for Example 5 Magnitude-Condition Quartic Equation

(Page 4)
Parameter | Figure 10 Final Figure 13 Figure 9 Final Figure 12 Figure 8 Final
Symbol | Quartic-Equation | Quartic-Equation | Cubic-Equation | Cubic-Equation Quadratic-
Algorithm Post-Processing Algorithm Post-Processing Equation
Algorithm Algorithm Algorithm
Z1M 2.00000001E-08
Z2M 4.92168155E-15
Z3M 3.00000000E-04
MIN (z1m, Z2m, Z3m) < £ MAX(z1m, Z3m) TRUE
y2=0 TRUE
Z1M > Z3M FALSE
XA = X3 -3.00000000E-04
Z1M 2 Z2M TRUE
zimM > £ Z3m FALSE
C 1.00000000E-22 | [1.0000000E-22]
B -2.00000050E-08| [-2.000001E-08]
XAE 3.00000000E-04
Ce 3.00000000E-22 | [3.0000000E-22]
Bg 6.00000150E-08 | [6.0000015E-08]
IB| > Brg AND |C| > Crg TRUE
C=0 FALSE
D 3.99999800E-16
Dg 2.40000240E-15
ID| < Drg FALSE
D>0 TRUE
y2=Y [0] 0
Q 2.00000000E-08
B>0 FALSE
X =X1 [2.0000000E-08] | 2.00000000E-08
qu=X2 [5.0000000E-15] | 5.00000000E-15
y2=0 TRUE
XA > Xq1 FALSE
Z1 [2.0000000E-08] 2.00000000E-08
X2 [5.0000000E-15] 5.00000000E-15
X3 [-3.000000E-04] -3.00000000E-04
V2 [0] 0
X2=171 2.00000000E-08
X3=x2 5.00000000E-15
X4 =X3 -3.00000000E-04
Ys=y2 0
The table to the right shows the pertinent calculated Te= —/xs= | —1.74992499499898
parameter values to 14 decimal places. The calculated | Txs = -1.74992499499986
values of Txz and Tx3 are not truly equal to each other; = -1.74992500500000
they differ starting in the 12th decimal place. They Xo = 0.00000001000102
only appear to be equal in Table VIII because it shows Xs = 0.00000001000014
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only the first eleven decimal places. The value of Txz is calculated correctly as —,/x3, but
the quartic-equation algorithm introduces some round-off error into the Tx3 value.

The effect of the round-off error becomes obvious when C, which is close in value to Tx2z and
Txs, is subtracted to produce X2 and Xs.

This sort of round-off error discrepancy can be avoided if the algorithm reverts to the Txn
formulas in Figure 11 (Solutions of the Depressed Quartic Equation) whenever y2 = 0 and
x3 > 0. That is, whenever the three resolvent-cubic-equation solutions are all nonnegative
real. Such refinement is unnecessary, however, because the discrepancy problem occurs
only under the magnitude condition, for which the relevant Xn values (X2 and X3) are
recalculated in post processing.

Post-Processing Recalculation of Three Small-Magnitude Solutions

Using the initial solution component values boxed in red, Y(1), Y(3), X(1), X(2), X(3), and
X(4), the quartic-equation post-processing algorithm sets Y(2) = Y(1), Y(4) = Y(3), and
calculates the square Zsq(k) of the solution absolute values, Equation (62).

The Value-Ordering Routine, Figure 14, returns these same square values in value order as
Zmsq(k) and the index function Iin(k) so that

ZmsQ(1) = Zmsq(2) = Zmsq(3) = Zmse(4) and  Zsq[Iin(k)] = Zmsq(k).
Zmsq(1) = 49 is the greatest Zsq(k).

The algorithm calculates Zsq tn = Zmsq(1) £2 = 12.25, which value is listed at the top of
Table VIII, Page 3. This Zsq tn value becomes the threshold for Zmsq(k) less than Zmsq(1): if
Zmsq(k) < Zsq t, then solution Zm(k) will be recalculated. Zmsq(4) = 1.00002783x10716 is
the smallest Zmsq(k), and Zmsq(4) < Zsq tn is TRUE, so at least Zm(4) requires recalculation.

Post processing uses Equation (64) to calculate the real and imaginary components Xm(k)
and Ym(k) of the ordered solution Zm(k).

The second greatest Zmsq(k) value is Zmsq(2) = 9x1078, and Zmsq(2) < Zsq t1 is TRUE, so
solutions Zm(2), Zm(3), and Zm(4) will all be recalculated as solutions of a cubic equation.
Of the solutions calculated by the quartic-equation algorithm, only the greatest-magnitude
real solution Zm(1) is reliable. Its components are relabeled X1 = Xm(1) =7 and Y1 = 0.
The values in the table are boxed in green to denote components of a final solution.

Post processing next calculates the cubic-equation coefficients az, a1, and ao and their error
size parameters azg, aig, and aoe. These are the input parameters required for the cubic-
equation algorithm to recalculate quartic-equation solutions Zm(2), Zm(3), and Zm(4).

The cubic-equation algorithm, Figure 9, takes over calculation about half way down the

Page 3 of the table. No special cases apply, and R > 0 is FALSE, so Viete computation
produces the three real cubic-equation solutions. The components y2, z1, x2, and x3 (bottom
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of page 3 of the table) are turned over to cubic-equation post processing, which takes over
computation at the top of Page 4.

The cubic-equation post processing calculates the absolute values z1iwm, z2m, and zsm. The
least of these is MIN(z1m, Z2m, Z3m) = Z2m = 4.92x10715, The greatest is MAX(z1m, Z3m) =
z3m = 3x107*. Because MIN(z1m, z2m, z3m) < £ MAX(z1m, z3m) is TRUE, at least one of the
three cubic-equation solutions requires recalculation. With imaginary componentyz =0,
either z1 or x3 must be the real value of greatest absolute value. Computation finds

z1m > z3Mm is FALSE, so real solution x3 has greatest magnitude, and xa is set equal to

x3 = —3x1074 This xa value will become one of the quartic equation’s computed solutions.

Evaluation shows z1m > z2m is TRUE, so solution z1 has the second greatest absolute value.
Because zim > € z3m is FALSE, the two small-magnitude solutions z1 and x2 will both be
recalculated as solutions of a quadratic equation. The processing calculates the quadratic
equation coefficients C and B and the corresponding error size parameters Ct and Bk.

These values are passed on to the quadratic-equation algorithm, which takes over
computation half way down Page 4 of the table in the last column. No special case applies,
and determinate D > 0, so calculation proceeds with Numerical Recipes to find the two real
solutions X1 = 2x1078 and X2 = 5x10715 (Y = 0).

These values are passed back to cubic-equation post processing with labels xq1 = X1,

Xq2 = X2, y2 =Y, to complete its calculation. The cubic-equation’s large-magnitude solution
xa = —-3x107*is less than xq1 = 2x1078, so the cubic-equation’s solution components are
assigned as follows:

71 = Xq1 = 2x1078, X2 = Xq2 = 5x10715, x3=xa=-3x10"% and y2 = 0.
Finally, these components of the three cubic-equation solutions are passed back to the

quartic-equation post-processing algorithm, where they are relabeled as components of the
quartic equation’s three small-magnitude solutions.

X2 =271 =2x1078, X3 =x2 =5x10715, X4 =x3=-3x10% and Ys=y2 =0
These values at the end of the table are boxed in green to show that they are components of
final solutions. They join the components X1 = 7 and Y1 = 0 calculated earlier.

All of these calculated values are accurate with solution relative error less than 1x10716,

This completes our description of quartic-equation post processing and the entire round-
off-error mitigation design. The following section is an error analysis of that design for
multiplicity and multiplicity near-miss conditions.
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VII. ERROR ANALYSIS SUMMARY FOR MULTIPLICITY AND MULTIPLICITY NEAR-MISS

This section and the following three show that the mitigation design provides excellent
solution accuracy for the multiplicity and multiplicity near-miss conditions. Previous
sections have shown how the design addresses round-off error magnification for the
multiplicity and magnitude conditions. We also showed how the design eliminates error
magnification for quartic-equation symmetry and symmetry near miss. See the Section IV
subsection on the Example 3 Quartic Equation Symmetry Condition and the Section V
subsection on the Quartic-Equation Symmetry Near Miss (Table [, Example 4). Here for
the first time, we address algorithm performance for the multiplicity near-miss condition.

This analysis, which examines quadratic and cubic equations, does not specifically address
quartic equations. This is because the mitigation design automatically addresses solution-
error magnification in quartic equations by providing accurate solutions to cubic and
lower-order equations. Quartic-equation multiplicity, symmetry, and their near misses
have a corresponding special-case condition in the Euler resolvent cubic equation as
detailed in Figure 11. Accurate solutions to the resolvent cubic equation produce accurate
quartic equation solutions. Post processing accurately calculates quartic-equation small-
magnitude solutions as accurate solutions of cubic, quadratic, or linear equations.

The analysis in these last four sections is based on the fundamental concepts of
quantum uncertainty, zero-guard range, and relative coefficient error.

Quantum Uncertainty
To establish the computer’s solution accuracy limit, we define the concept of quantum
uncertainty (QU). Let zn be a true root of the polynomial function

N

p@) = ) at

k=0
where coefficient an = 1. Then p(zn) = 0. Now add a small positive value 8z to zn, and ask
the question: “How great must 8z be so that the computed value of p(zn+0z) changes from
zero?”. To be sure that p(zn+0z) is not computed as zero, 6z must be at least as great as
|zn|e, the magnitude represented by zn's least significant bit. Otherwise, the value zn+0z
could be stored in the computer as zn. Usually, however, 8z must be greater than |zn|e.

Consider the root z3 = 1 from the Table I, Example 1 polynomial p(z) = z3—-5z2+ 8z -4 =
(z—1)(z—2)2. The magnitude of the root’s least significant bit is |z3|e = € = 2.22x10716. The
computer evaluates the polynomial p(z) at z = z3 = 1 as the sum of its four terms:

p(1) =1-5+8-4 = 0. The least significant bit of p(1) is the least significant bit of the
greatest-magnitude term 8 of the sum. The magnitude represented by that bit is therefore
dp = |8le = 8¢. The true value of p(z3 + 6z) = p(1 + 0z) is

p(1+8z) = (14+6z—-1)( 1406z — 2)2 = 8z(0z — 1)2 = 56z3 — 20722 + 8z = 8z for 6z| << 1.
To assure that the value of p(1+98z) is not calculated as p(1) = 0, the value 6z must satisfy
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p(146z) =6z > dp = 8e~1.78x10715,

The simple root zz = 1 of p(z) could be calculated on the computer anywhere in the range
1 <zn < 148¢. We call the magnitude of this range the quantum uncertainty (QU) of root
z3 = 1. The quantum uncertainty value is designated |0z|qu:

|0z|qu = 8e = 1.78x1071> for rootz3 = 1.

We define the relative quantum uncertainty |6z/z3/qu as the ratio of the quantum
uncertainty |0z|qu to the absolute value of the true root zs = 1. For this case then

|0z/z3lqu = [0z|qu/|z3| = 8¢/1 = 8e~1.78x10715.
The double root z1 = z2 = 2 of this same polynomial has a much greater relative quantum
uncertainty as we now show. The computer evaluates p(2) as the sum of its terms:
p(2) =23-5(22) +8(2) -4 =8-20+ 16 —4 = 0. The least significant bit of p(2) is the
least significant bit of the greatest-magnitude term, 20. The magnitude represented by that
bit is therefore 6p = |20|e = 20e. The true value of p(z1 + 8z) = p(2 + 6z) is

p(2+9z) = (24+6z—1)( 2406z — 2)%2 = (14062) 622 ~ &z for |dz| << 1.
To assure that the value of p(2+98z) is not calculated as p(2) = 0, the value 6z must satisfy
p(2+8z) = 8z2 > dp=20e = |8z > V20e = |8z|qu=+20s.
The relative quantum uncertainty for the double root z1 = z2 = 2 is therefore
182/z1]qu = |8z|qu/|z1| = V20e/2 = /5¢ ~3.33x108 for double root z1 = z, = 2.

This relative quantum uncertainty for the double root z1 = z2 = 2 is over seven orders of
magnitude greater than that for root z3 = 1.

The relative quantum uncertainty |6z/zn|qu is on the order of ¢ for a simple root, /2 for a
double root, and €1/3 for a triple root.
The general procedure for calculating quantum uncertainty of root zn of polynomial
p(z) =zN+ana1zN1+...+ao
is as follows. Calculate the polynomial’s bit size at z = zn as
8p = MAX(lzy |, lan-1zn '], -+, lag De.

Solve the polynomial equation
p(zn + 0z) = £0p

for the uncertainty 8z using either sign for dp on the right. The choice makes little
difference. The quantum uncertainty for root zn» is the absolute value of 6z, and is
designated |06z|qu. The relative quantum uncertainty is |[6z/zn|qu.

We deviate slightly from this definition of relative quantum uncertainty when the root is a
multiplicity near-miss root. Suppose roots zn and zn+1 are a pair of such roots given by

Zn = X0 + Az and Zn+1 = X0 — AZ
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where xo is nonzero real and |Az| < |xo|. The displacement Az from Xo is either real with

Az = Ax > 0, or Az is pure imaginary with Az = iAy and Ay > 0. The phrase “near-miss”
implies that |Az| << [xo|. We simplify the calculation of the relative quantum uncertainty by
using xo rather than zn = x0 + Az to normalize quantum uncertainty |6z|qu. That is, we take
|0z /x0|qu as the relative quantum uncertainty rather than [6z/zn|qu.

Zero-Guard Processing and Zero-Guard Range

Our mitigation design avoids large error magnification for multiple solutions by
anticipating and accommodating the multiplicity condition. For quadratic equations

Z2 + BZn + C = 0, the Figure 8 algorithm calculates the discriminate’s error size parameter
De. If the calculated discriminate magnitude |D| is so small that |D| < D¢, then the
calculated D value is reset to zero, and the algorithm calculates the two quadratic-equation
solutions as the appropriate double solution Z1 = Z2 = X1 = X2 = —B/2 with imaginary
componentY = 0.

The Figure 9 cubic-equation algorithm avoids multiplicity error magnification in similar
fashion. If the magnitude |R| is so small that |R| < Reg, then the calculated R value is reset to
zero, and the algorithm properly calculates the three real solutions, two of which are the
same real value (Special Case 3). If the cubic equation is the resolvent cubic equation of a
quartic equation, then the quartic-equation solutions are properly calculated, with two of
them set equal to the same real value.

This process whereby an algorithm performs the test |D| < Dee or |R| < Ree to determine
whether D or R is reset to zero, we refer to as zero-guard processing. The range of D values
(—Deg, De€) about D = 0 corresponds to a range of quadratic-equation solution values
(-B/2 — AZ, —-B/2 + AZ) about the double solution value Z1 = Z2 = Xo = —B/2. We call the
positive, real value AZ the zero-guard range|AZ|zc about —B/2. Similarly, the range of R
values (—Re¢, Re€) about R = 0 corresponds to a range of solution values (zo—Az, zo+Az)
about a double solution zo of a cubic equation. We call Az the zero-guard range |Az|zc about
Zo0.

The relative zero-guard ranges for the quadratic equation and cubic equation are denoted

|AZ/Xo|zc = |AZ|zc/|Xo| and |Az/x0|z6 = |Az|zc/|Xol.

The zero-guard range |Az|zc is a potential error caused by the zero-guard processing. For if
two true near-miss solutions are z2 = zo + Az and z3 = zo — Az where 0 < |Az| < |Az|z, then
the zero-guard processing will incorrectly calculate the two solutions as a double solution
z2 = 73. We use the ratio of zero-guard range to the double-root quantum uncertainty as a
measure of our ability to keep the size of |Az|zc under control.

|AZ /X076
|62/X0|QU.

Zero-guard processing also includes the Figure 9 cubic-equation processing for Special
Case 2 (q =r = 0, multiplicity 3) and Special Case 4 (r = 0, three evenly spaced solutions).

7G/QU =
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Relative Coefficient Error

Relative coefficient error measures the accuracy with which the set of calculated solutions
reproduces the input coefficients via the check equations. For a cubic equation with input
coefficients az, a1, and ao, the three relative coefficient errors are

dzc — Az

dic —d doc — do

=N)

63211 = ) 8alu = ’ 63011 = (82)

az a;

where the calculated solution values zic, z2c = x2c + iy2c, and z3c = x3c— iyzc are applied to
the check equations (either Equations (2) or (3)) to calculate the check coefficients azc, aic,
and aoc. The relative coefficient errors provide a measure of an algorithm’s accuracy
without a priori knowledge of the true solutions.

Corresponding definitions apply to the quadratic equation Z2 + BZ, + C = 0 with
coefficients B and C and calculated solutions Zic and Zz2c. The check coefficients are

Bc = —(Zic + Z2c) Cc =Zic Zzc
and the relative coefficient errors are
OB, = ’BC_B| and oC, = ’CC_C‘.
B C

Error Analysis Summary

Sections VIII through X examine the quantum uncertainty, zero-guard range, and relative
coefficient error of multiple and multiple near-miss solutions of quadratic and cubic
equations. We show that the relative coefficient error induced by zero-guard processing is
a maximum of 3.3x1071> for cubic equations and the ratio ZG/QU is less than 2.3. These
values are even smaller for quadratic equations.

Section VIII addresses multiplicity 2 solutions (Xo) and multiplicity 2 near-miss solutions
(Xo £ AZ where |AZ| << |Xo|) in quadratic equations. We will also call these double
solutions and double near-miss solutions. When AZ = 0 so that two real solutions are
exactly equal to each other, then the relative quantum uncertainty |8Z/Xo|qu is v2& ~
2.11x1078. The relative zero-guard range is |AZ/Xo|zc = V3¢ ~ 2.58x1078, 22% higher than
the quantum uncertainty: ZG/QU = 1.22. When the zero-guard range is in effect

(AZ < |AZ|z6), then the maximum relative coefficient errors are 6By = 0 and

dCu = 6.66x10716,

Sections IX and X demonstrate that our mitigation design provides good calculation
accuracy for cubic equations.

Section [X addresses multiplicity 3, its near miss, and multiplicity 2. Two solutions have the
same real value xo, and a third real solution is xa. The difference xa — xo drops to zero to
create the multiplicity 3 condition. For multiplicity 3 (xa = xo0), we show that the relative
quantum uncertainty [6z/zo|qu is (3€)1/3 ~ 8.73x1076. The maximum relative solution error
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imposed by zero-guard processing is 15% greater at 1x1075, but the corresponding relative
coefficient errors (Equation (82)) are small at dazu = da1u = 0, and daou = 2x10715. As the
relative separation |(Xa — Xo0) /Xo| becomes large, then relative quantum uncertainty |6z/zo|qu
for the double solution xo approaches (2¢)1/2~ 2.11x1078; relative quantum uncertainty
|0z/Zalqu for the simple solution xa approaches ¢ = 2.22x10716,

Section X addresses multiplicity 2 near miss. The three cubic-equation solutions are now
Z1 = XA, Z2 = X0 + Az and z3 = Xo — Az where Az is either a positive real value Ax or a positive
pure imaginary number iAy. Relative quantum uncertainties for the near-miss solutions
are calculated as a function of n = xa/xo0 and Az/xo. The relative zero-guard range |Az/zo|zc
is a function n, but can change dramatically if post processing recalculates the two near-
miss solutions when |xo| < [xa|. The recalculation occurs approximately when

|xo/xa| = |1/m| < |E| where C is the Figure 12 post-processing constant. With the proper
choice of £ value, post processing not only eliminates magnification of magnitude-type
round-off error, but it also controls the size of zero-guard range.

Section X shows that the selected value { = 0.345 minimizes relative coefficient error
induced by zero-guard processing. With this C value, the relative coefficient error induced
by zero-guard processing is a maximum of 3.3x1071> for all three coefficients and the
maximum ratio ZG/QU is 2.3.
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VIII. QUADRATIC EQUATION ERROR ANALYSIS

For quadratic equations Z2 + BZ,, + C = 0, we show that zero-guard processing in the
Figure 8 algorithm produces excellent solution accuracy: ZG/QU = 1.22 and relative
coefficient errors 8Bu = 0 and 6Cu = 6.66x10716 when the zero-guard range is in effect

(AZ < |AZ|zc). This accuracy, however, is no better than that provided by the preliminary
Numerical Recipes algorithm of Figure 4 for stand-alone quadratic equations in which the
user enters coefficients B and C. As we demonstrate, it is solution accuracy for cubic and
quartic equations with multiplicity (or multiplicity near miss) that requires the quadratic-
equation algorithm to have zero-guard processing.

The quadratic polynomial P(Z) with roots Z1 = X1 + iY and Z2 = Xz — iY is written

P(Z)=7Z24+BZ+C where B=-(Z1+7Z2) and C=7Z1Z2.

The solutions Z1 and Z2 are both real with X1 > X2, Y = 0, or else they form a complex
conjugate pair with X1 = X2, Y > 0. The quadratic equation is

P(Z1) =P(Z2) =72+ BZ. + C=0.
To analyze quantum uncertainty and zero-guard range for multiplicity and multiplicity
near-miss conditions, define the solutions Z1 and 7z as
Z1=Xo+ AZ and Z2=Xo—AZ

where Xo is nonzero real and |AZ| < |Xo|. The displacement AZ from Xo is either real with
AZ = AX> 0, or AZ is pure imaginary with AZ =iAY and AY > 0. The coefficients become

B =-2Xo C=X3- AZ2 |AZ| < |Xo. (83)
The polynomial at Z = Z1 becomes

P(Z1) = (Xo+AZ)? — 2Xo(Xo+AZ) + Xo2—AZ2 = O. (84)

Equation (84) is symmetric with respect to both AZ = 0 and Xo = 0. That s,
P(Z1) =P(Xo + AZ) =P(Xo—AZ) =P(Z2) =0 and
P(—Xo + AZ) = (—Xo + AZ)? — 2(—Xo) (—Xo + AZ) + (—X0)? —=AZ? = 0 = P(Xo + AZ)

We therefore impose the convention
Xo>0

in order to simplify the analysis without loss of generality.

Quadratic Equation Quantum Uncertainty

The quantum uncertainty of solution Zi is the minimum absolute value |8Z| which assures
that the computed polynomial P(Z1 + 6Z) in Equation (84) is nonzero. Of the three terms
in P(Z1), the second term, —2Xo(Xo + AZ), has the greatest magnitude under our restriction
|AZ| < |Xo|. The magnitude of the polynomial’s least significant bit is therefore

9/24/2021 Page 77 of 136



Quadratic Equation Error Analysis

8P = P = 2[Xo(Xo + AZ)le.

Pg = 2|Xo(Xo+AZ)| is the polynomial’s error size parameter.

We find the quantum uncertainty of solution Z1 by adding error 6Z to Z1, and solving the
following equation for |8Z|:

P(Z1+ 8Z) = +5P where 8P = Pre = 2[Xo(Xo+AZ)|e. (85)

The right side of this equation may be either +3P or —dP. We start with +3P and then show
that the resulting quantum efficiency differs little from that using —P.

The easiest way to proceed is to first normalize Z1 + 6Z by Xo. The normalization allows us
to calculate the relative quantum uncertainty |6Z/Xo| = |0Z/Xo|qu as a function of the
multiplicity relative miss AZ/Xo.

Use +8P on the right side of Equation (85), and divide Equations (84) and (85) by X3:

P20 (1488 2 (1480 v 1- (59 =0
X2 Xo Xo Xo/
P(Z, +8Z) _ (1 N AZ N 62)2 , (1 N AZ N sz) 1 <AZ)2 _, (1 N AZ)
X2 U7X X Xo | Xo X,) X,/ o

Subtract the first equation from the second and simplify to obtain the general quadratic
equation for relative quantum uncertainty 6Z/Xo.

e O P O R "
Xo) T Xo X Xp) 0T O T (66)

If the displacement AZ is real (AZ = AX > 0), then the pertinent solution is also real and
given by

OZ
Xo

_ X 2(1 + AX/Xy)e for AZ = AX and
w X0 |AX/Xo| + J(AX/X0)2 + 2(1 + AX/Xg)e  P(Z1 +8Z) = &P.

This solution provides the relative quantum uncertainty as a function of the real relative
near-miss value AX/Xo. Figure 15 below provides linear and log-log plots of |6X/Xo|qu Vs
AX/Xo that show how quantum uncertainty decreases as AX/Xo increases from zero. At the
multiplicity condition AX = 0, the right side of Equation (87) collapses to v/2e.

OZ oX

—| =—=1+2e22.11x10"% for the multiplicity condition AZ = AX = 0. (88)
XO QU XO

(87)

When relative miss |AZ/Xo| satisfies v2& << AX/X, << 1, then the numerator in (87)
collapses to 2¢, the denominator collapses to 2|AX/Xol|, and |6X/Xo|qu becomes

18Z/Xolqu = for V2e < AX/X, « 1. (89)

&
AX/X,
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Figure 15 Quantum Uncertainty for Quadratic-Equation Multiplicity Real Near Miss

Quadratic Equation Solutions Are Xo + AX And Xo-—AX.

2.5E-08 1.E-06 T T T 1
18X/ Xolou = V2e ~ 2.11x1078
2.0E-08 1.E-08 —
Relative Relative X
Quantum L5E-08 Quantum ;g1 -
Unertainty Unertainty . \
oX 1.0E-08 oX 1e12 {|8X/Xolqu = AX/X,
XO QU XO QU | |
5.0E-09
L 18X/Xolqu = 26 = 4.44x10716
0.0E+00 1.E-16 l | | |
0.E+00 1.E-06 2.E-06 3.E-06 4.E-06 1.E-16 1.E-12 1.E-08 1.E-04 1.E+00
Multiplicity Relative Miss AX/Xo Multiplicity Relative Miss AX/Xo

Finally, when AX/Xo = 1, then the radicand in (87) is 1 + 4¢ = 1, the denominator is 2, the
numerator is 4¢, and |6Z/Xo|qu is

|0Z/Xolqu = 0Z/Xo =2¢  for AX/Xo=1. (90)
The displacement AZ may also be imaginary: AZ = iAY where AY > 0. In that case, the error

value 8Z is complex: 6Z = 6X + idY. The left side of Equation (86) then consists of both a
real part and an imaginary part.

8X  8Y\? _ AY /8X &Y AY
(—+1—)+2 ( + )—2(1+1—)s=0

Xo Xy X X T Xy Xo
<8X)2 <6Y)2 ZAYSY pe i 8X6Y+AY8X AY ]_
X ~\Xo) XXy TG Xo  XoXe Xo A

The real and imaginary components each equal zero.
() () 22 2em0 Reatpa o1
Xg X, X X €= (Real Part) 91)

S—X (8—Y + g) — g e=0 (Imaginary Part) (92)
Xo \Xo  Xo/  Xp
Add (AY/Xo)? to both sides of (91) and rearrange as
() (A9 o2 - (42 ©3)
Xo Xo Xo  Xo
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Rearrange (92) as
Y AY (AY oX
The right side of (93) is the square of the left side of (94). Square Equation (94); then
substitute the squared right side for the right side of (93). Simplify to obtain a quadratic
equation in (6X/Xo)2.
2 2

X\ 2| 5X AY N
(X—> + Bsx <X_> + Csx = 0 where Bsx = <X_> —2¢ Csx = —<X—0> € (95)

0 0 0

Apply the Equation (95) solution value (6X/Xo0)? to Equation (91) to produce a quadratic
equation in 3Y/Xo.
2

SY\2 SY AY 5X
(X—O) + BSY (X—O) + CSY =0 where BSY =2 (X_O), CSY = 2¢ — (X_()) (96)

The Figure 8 quadratic-equation algorithm provides the two solutions for each of
Equations (95) and (96). The two solutions of (95) have opposite signs as indicated by the
equation’s negative constant coefficient, Csx = —(AY/Xo0)?e2. We use the positive solution
for (6X/Xo0)?, and then take its positive square root for 6X/Xo. The positive square-root
value is required in order that 5X/Xo matches Equation (88), 8X/Xo = /2¢, at the
multiplicity condition AZ = AX = AY = 0. Notice that at multiplicity, when AY = 0 and
8X/Xo = v/2¢, Equation (96) collapses to (8Y/Xo0)2 = 0.

The two solutions of Equation (96) for 6Y/Xo are each negative or zero because both
coefficients, Bsy = 2(AY/Xo) and Csy = 2¢ — (0X/Xo0)?, are nonnegative. We select the greater
solution for [0Y/Xo|qu (solution of lesser absolute value) because it satisfies (94) as
required.

Figure 16 below plots the calculated relative quantum uncertainty for imaginary near miss
AZ = iAY. The dashed blue curve is the real component 6X/Xo of 6Z/Xo, the dashed yellow
curve is the negative imaginary component —3Y/Xo of 6Z/Xo, and the solid black curve is the
total (the relative quantum uncertainty): |6Z/Xo|qu = [(8X/X0)2 + (8Y/X0)?]1/2.

The most obvious feature of the plot is the dramatic change in behavior of both the real and
imaginary components at the critical displacement AY/Xo = 2g ~ 2.11x1078. As AY/Xo
increases through this value, the linear coefficient Bsx = (AY/Xo0)? — 2¢ of Equation (95)
changes sign from negative to positive. The sign change in Bsx then changes the nature of
the equation’s positive solution (6X/Xo)2. The equation’s constant coefficient is

Csx = —(AY/Xo0)? €2, so the determinate is

Dsx = B2sx — 4Csx = (AY/X0)* — 4(AY/X0)?%(e — €2) + 4¢€2. 97)

When AY/Xo = v/2g, and Bsx = 0, then Dsx = — 4Csx = 4(AY/X0)2 €2. Unless AY/Xo is close to
the critical displacement v/2¢, however, the difference (& — £2) = £(1 — ¢) in Equation (97)
may be written as €, and Dsx becomes
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Dsx ~ (AY/X0)* — 4(AY/X0)% + 4€2 = [(AY/X0)2 — 2¢]? = Bax?.

The formula for Q in the Figure 8 quadratic-equation algorithm is Q = (|B| +./|D|)/2. So, Q
for Equation (95) is

1 1
Qax = 5 (IBsx| +/IDsxl) 5 (IBsxl + [Bsx) = [Bax| = 1(AY/Xo)? - 2el.

This approximation for Qsx is excellent unless |(AY/Xo)2 — 2¢|/(2¢€) < 1x107¢. That s,
Qsx = [Bsx | unless AY/Xo is extremely close to /2e.

Figure 16 Quantum Uncertainty for Quadratic-Equation Multiplicity Imaginary Near Miss

Quadratic Equation Solutions Are Xy +iAY and Xo—iAY for AZ =iAY.
1.E-06 T |

F&ﬁ(;;\/_z—g_: i— AY/X, = V2e
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Unertainty 8Y/X, : I
57 : — Y%= 5y,
< ! N,

Xolgy 1.E-12 p— g
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P SX/Xe |
C R
1.E-14 :
5X/Xo = ¢ l
~2.22x10716 \_.‘ _________________
1.E-16 |
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When (AY/Xo0)? < 2¢, then Bsx = (AY/Xo0)? — 2¢ is negative. The Figure 8 algorithm gives the
solution of Equation (95) for (6X/Xo)? as Qsx, which implies that 8X/Xo is:

8X/Xo = +/Qox = +/IBox| = /126 — (AY/Xo)?| for AY/X, < v2& ~ 2.11x1078  (98)

When (AY/Xo0)2 > 2¢, then Bsx = (AY/X0)?2 — 2¢ changes sign to positive, and the Figure 8
quadratic-equation algorithm gives the solution of Equation (95) as — Csx / Qsx. The
formula for 6X/Xo becomes
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_ —Csx _ (AY/X,)?€? _ (AY/Xo)e
BX/%o = \/ Qx \/I(AY/XO)Z —2el  JI(AY/X)Z — 2¢] for AY/Xo >V2e  (99)

Equation (99) simplifies even further when there is an order of magnitude separation
between (AY/Xo)2 and 2¢. If (AY/Xo0)2 >> 2¢, then [(AY/X0)2 — 2e] — (AY/Xo)2
8X/X, ~ & ~ 2.22x10716 for AY/X, > 3.2xV2¢ (100)

The values of 6X/Xo in Equations (98) and (100) are clearly evident as the two horizontal
dashed blue lines for [6X/Xo]qu in Figure 16 to the left and to the right of
AY/Xo =+2e~2.11x1078.

These results for 6X/Xo produce corresponding formulas for 8Y/Xo via Equation (96). For
the condition AY/X, < v/2¢, substitute Equation (98) into (96).

SY\ 2 AYSY [(AYN? /8Y AY\?
&) * ot &) =G tx) =0 =

Xo Xo Xo  \Xp Xo Xo
oY oY AY
— | = =— for AY/X, < V2e¢.
X, X, Xq or /Xo V2e

This result is shown as the diagonal, increasing yellow dashed line for |6Y/Xo|qu in
Figure 16.

For the condition AY/X, > 3.2x1/2¢, substitute Equation (100) into (96).

dY\* _AYSY , AY r
(X—O) 2X—0X—0 +2e—¢*=0 for X_o > 3.2xV2¢. (101)
The small value of ¢ allows the constant coefficient Csy = 2e — €2 = (2—¢)¢ to simplify to Zg,
so the equation’s determinate becomes Dsy = 4[(AY/Xo0)? — 2¢]. The determinate simplifies
to Dsy = B3, = 4(AY/X0)? because of the condition AY/X, > 3.2xv/2¢. The corresponding Q
value becomes

1 1
Qsy = 5(|BSY| +/IDgyl) = > (Bsyl + [Bsyl) = [Bsy| = 2(AY/Xo).

The value Bsy = 2(AY/Xo) is positive, so the Figure 8 quadratic-equation algorithm gives

the desired greater solution of (101) as 8Y/Xo = —Csvy/Qsy = —2¢/[2(AY/X0)]:

oY oY €

orf _ oY _ for AY/X, > 3.2xV2e. 102
Xl = X, T Avx, lor AY/X 2e (102)

This result is shown as the diagonal decreasing yellow dashed line for |6Y/Xo| in Figure 16,
which is similar to that for [6Z /Xo|qu in Equation (89) when AZ = AX is real and
V2e << AX/Xo << 1.

Equations (100) for 6X/Xo and (102) for |8Y/Xo| show that
|0X/Xo| =[0Y/Xo|=¢ for AY/Xo =1
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Figure 17 below compares the relative quantum uncertainties from Figures 15 (real

AZ = AX) and 16 (imaginary AZ = iAY). These are the light blue and yellow curves
respectively in Figure 17. Recall that these values apply to the quadratic equation
P(Z1+08Z) = +46P, Equation (85) using +06P on the right side. The Figure 17 dashed black
curve and red curve show the relative quantum uncertainties using —3P on the right side of
Equation (85): P(Z1+38Z) = —0P. The formulas for these latter two curves are derived
below.

Figure 17 Quantum Uncertainty for Quadratic-Equation Multiplicity Near Miss --
Comparison of Four Calculations

Solutions of quadratic equation P(Z,) =0 are Z; =Xo + AZ and Z; =X, - AZ
where real AZ = AX or imaginary AZ = iAY. Uncertainty dZ satisfies
P(Z1 + 0Z) = £8P where 0P = Pre = 2[Xo(Xo+AZ)|e.
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Using P(Z1+0Z) = —0P instead of P(Z1+38Z) = +3JP, the constant coefficient in Equation (86)
changes sign.

(BZ)2+2AZ 8Z+2(1+AZ) —0 for P(Z +87)=-5P (103
X) T2 % %o X,/ ¢ 70 for P+ on) = (109
The case of real AZ = AX produces the determinate of this quadratic equation as

D = 4[(AX/X,)? — 2(1 + AX/X,)s].
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The determinate is negative for AX/Xo less than about v2¢. The pertinate solution of
Equation (103) is then

8Z/Xy = —AX/Xo +1W=D/2, AX/X, <V2s
whose absolute value is

18Z/Xolqu = /(AX/X)? + 2(1 + AX/X)e — (AX/Xo)? = 2(1 + AX/Xp)e ~ 2e

18Z/Xolqu ~ V2e for AX/X, <V2e and P(Z; +8Z) = —8P.
This is the same value plotted in Figure 15 for AX/Xo < V/2¢.

For AX/Xo > +/2¢, the determinate D is positive. The solution of Equation (103) is that given
by Equation (87) with a sign change for terms that contain «.

S_Z — ‘ _2(1 + AX/XO)S for AZ = AX > XO \/2_8 and
Xolqu  [AX/Xo| +/(AX/X0)? — 2(1 + AX/X)e P(Z, + 8Z) = —&P.

This value of [6Z/Xo|qu versus AX/Xo is plotted as the dashed black curve in Figure 17.

Finally, we solve Equation (103) for the case of imaginary AZ: AZ = iAY. Just as Equation
(86) leads to Equations (95) and (96) for (6X/Xo)? and 8Y/Xo, so Equation (103) produces
the following.

5xy 217 85X 2 AYA2 AY\S

(X—O) + Bgy (X—O> +Cgg = 0 where Bgy = (X—O> +26 Coy = —(X—O> & (104)
8Y\2 8Y AY 85X\ 2
(X—0> + BSY (X—0> + CSY =0 where Bgy =2 (X_())’ CSY = 2e— (X_()) (105)

The only difference between these and Equations (95) and (96) is that the sign of 2¢ is
reversed in the formulas for Bsx and Csy.

The values of both Csx and Csy are negative, so Equations (104) and (105) each have two
solutions of opposite sign. The positive solutions are the ones of interest. Quantity
(8X/Xo0)? in Equation (104) must be positive, so it is calculated as the positive solution. The
maximum value of (6X/Xo)? is €2, so Csy * —2¢. The value of 6Y/Xo in Equation (105) must
then have an absolute value several orders of magnitude less than 1. The negative solution
of Equation (105) grows to —2 at AY/Xo = 1 and, therefore, cannot be 8Y/Xo. The positive
solution is 8Y/Xo.

From (8X/Xo0)? and 8Y/Xo as the positive solutions of Equations (104) and (105), relative
quantum uncertainty is calculated as

18Z/Xolqu = v/ (8X/X0)? + (3Y/X,)?

and plotted as the red curve in Figure 17.
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Quadratic Equation Zero-Guard Range

In the multiplicity near-miss condition where Z1 = Xo + AZ, Z2 = Xo — AZ, and |AZ| < Xo,
there is a range of small AZ values for which the determinate D = B2 — 4C fails to exceed its
quantum error value De ¢ in the Figure 8 final quadratic-equation algorithm. Zero-guard
processing resets D to zero in these cases, and calculates Z1 = Z2 = —B/2. The maximum
absolute value |AZ| of such AZ values is called the zero-guard range |AZ|zc.

Calculation of |AZ|z for the near-miss condition is straight-forward. Equation (83) gives
the coefficients as B = —2Xo and C = Xo2 — AZ2 > 0, so the determinate is

D = BZ-4C = 4AZ2.
Equation (33) gives Dk as

Dt = 2|B| Bt + 4Ct = 2|BJ2 + 4|C| = 2B2 + 4C = 12X3 — 4AZ2
The zero-guard range is found by equating D = 4AZ2 to Dee and solving for AZ.
D = 4AZ2 = (12X% - 4AZ2)e = AZ2 = 3X%¢e/(1-¢) = 3X3 ¢
The relative zero-guard range |AZ/Xo|zc becomes
|AZ/Xolz6 ~ V3e =~ 2.58x107¢8,

a value only 22% greater than the relative quantum uncertainty of vV2e ~ 2.11x1078.

Figure 18 below shows the relative zero-guard range in relation to the Figure 15 quantum
uncertainty for real near miss (AZ = AX) and the Figure 16 total quantum uncertainty for
imaginary near miss (AZ = iAY). The zero-guard range is shown as the vertical dashed red
line at the relative miss value of v3e on the horizontal axis. For all relative miss values
|AZ/Xo| to the left, i.e. for |AZ/Xo| < /3¢, the zero-guard processing causes the calculated
quadratic-equation solutions to be Zic = Z2c = —-B/2 = Xo. Zero-guard processing does not
affect the calculated solutions for |AZ/Xo| > /3e.

The diagonal red line plots the theoretical zero-guard relative error [8Z/Xo|zc, which is the
absolute value of the calculated solution Zic minus the true solution Z1, all normalized by
Xo: [0Z/Xo|zc = |[Xo — (Xo + AZ)]/Xo| = |AZ/Xo|.

I8Z/Xo|zc = |AZ/Xo|  for |AZ/Xo| <+/3e

In actual practice, the effective solution error produced by zero-guard processing is less
dramatic than appears in Figure 18.
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Figure 18 Comparison of Quadratic-Equation Zero-Guard Range to Quantum Uncertainty
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Figure 19 on page 87 compares the relative zero-guard range to computer trial results for
the real relative near miss AX/Xo at Xo = 1.2. The larger blue dots plot error results when
zero-guard processing is disabled; the smaller red dots show error with zero-guard
processing enabled. These results are typical for calculated solutions of stand-alone
quadratic equations. The zero-guard processing affects the error results only for a small
range of relative miss values just less than the zero-guard cut-off. In this example, zero-
guard processing affects the error results only over the range

7x1079 < AX/Xo <+/3e ~ 2.58x1078.

The normal Numerical Recipes algorithm of Figure 4 accurately calculates quadratic-
equation solutions for the multiplicity condition (AX/Xo = 0). [ am unable to find any
quadratic-equation example where this is not so. As AX/Xo increases from zero, the

Figure 4 algorithm continues to calculate the multiplicity result Zic = Z2c = Xo until AX/Xo is
great enough that the computer can store the constant coefficient C = X3— AZ2 =

X3 (1 — AZ2/X2) as something other than X3. Until that point, the theoretical zero-guard
error is meaningless because the calculated solutions are Zic = Z2c = Xo, whether or not
zero-guard processing is enabled.
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Figure 19 Effect of ZG Processing on Quadratic-Equation Trial Solution Error for Multiplicity
Real Near Miss
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Only when computed results differ between zero-guard processing enabled and disabled
can we say that zero-guard processing produces an effective error, as shown in Figure 20,
an expanded view of Figure 19. Even this effective zero-guard error is not a practical

concern. At the zero-guard range, we have AX/Xo = (AX/Xo0)zc = V3¢ . The coefficients B
and C are
B =—(Z1 + Z2) = —(Xo+AX + Xo—AX) = -2Xo

C = Z1Z2 = (Xo+AX) (Xo—AX) = X3(1 — AX2/X2) = X3(1 - 3¢)
The calculated solutions are Zic = Zzc = Xo, so the check coefficients are
Bc = —(Zic + Z2c) = —(Xo+Xo) =-2Xo = B
Cc = Z1ic Z2c = X3
The relative coefficient errors are
Bc—B
B

~ 3g ~ 6.66x1071°,

‘CC—C|_| 3e

B, =
9By | C 1-3¢

| =0 and 0oC,
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Figure 20 Effect of ZG Processing on Quadratic-Equation Trial Solution Error for Multiplicity
Real Near Miss -- Expanded View
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Thus, the user would have to supply coefficient relative accuracy to better than 15 decimal
places in order to write a quadratic equation with nonzero, near-miss relative

displacement AX/Xo equal to (AX/Xo0)zc = V3¢ or less.

For the example case of Figures 19 and 20 with Xo = 1.2, the value of C at AX/Xo = 0 is 1.44.
At AX/Xo = (AX/Xo0)zc = V3¢, the C value is 1.43999999999999904. The final 9 appears in
the fifteenth decimal place. This C value is so close to 1.44 that it is displayed as 1.44 in the
Excel spreadsheet, even though the internal spreadsheet value is less than 1.44.

We conclude that zero-guard processing in the quadratic-equation algorithm is superfluous
for solving stand-alone quadratic equations. The normal Numerical Recipes algorithm of
Figure 4 accurately calculates quadratic-equation solutions for the multiplicity condition
without engaging zero-guard processing. On the other hand, any theoretical error induced
by the zero-guard processing is not a practical concern.

9/24/2021 Page 88 of 136



Quadratic Equation Error Analysis

Necessity of Zero-Guard Processing in the Quadratic-Equation Algorithm
Zero-guard processing in the quadratic-equation algorithm of Figure 8 is necessary to

produce accurate solutions for some cubic- and quartic-equations that require post-
processing. Two such equations are:

z3—5.20000001 z2 +5.2000000025x1078z,—1.3x10716 = 0 with true solutions 5.2,
5x1078, and 5x1078

Z-12.20000001Z3 — 36.400000122 Z2 - 3.64000000305x1077 Z,+ 9.1x10716 = 0 with
true solutions 7, 5.2, 5x1078, and 5x1078

Post processing for these two equations engages the Figure 8 quadratic-equation
algorithm, which resets its initial non-zero D value to zero and thereby calculates the
double solution X1 = X2 = 5x1078 with Y = 0. Relative solution error is less than

e~ 2.22x10716,

If we turn off the quadratic algorithm’s zero-guard processing (if we use the Figure 4
algorithm instead of Figure 8), then the two calculated solutions differ from each other, and
relative solution error is on the order of 1078 instead of 10716.

Coefficient Minimum Required Relative Accuracy
Figure 19 above demonstrates one final point: the dashed green line plots the coefficient

minimum required relative accuracy on the right vertical axis as a function of AX/Xo. For
any displacement AZ from the multiplicity solution Xo, the constant coefficient is

C=X3-AZ2 =XZ[1 - (AZ/X0)?]
C=X3[1- (AX/X0)?] if AZ = AX OR C=X3[1+ (AY/X0)?] if AZ =iAY
For the multiplicity near-miss condition where |[AZ/Xo| is small, the user must supply the C
value with sufficient accuracy to distinguish it from C = X3, or equivalently, to distinguish
the factor [1 — (AZ/X0)?] from 1. Suppose for example, AZ/Xo =AX/Xo = 1x1074. Then
[1-(AX/X0)2] =[1-1x1078] = 0.99999999. The minimum required relative accuracy is

eight decimal places. The number N of decimal places, plotted as the dashed green in line
in Figure 19, is calculated as

N=—2log10(JAZ/Xol|).

If the constant coefficient has a relative accuracy limited to eight decimal places, then the
smallest, nonzero near-miss relative displacement that the quadratic-equation can
represent is AZ/Xo = 1x1074.

This concludes error analysis for quadratic equations, and we proceed with cubic
equations.
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IX. CUBIC EQUATION ANALYSIS - MULTIPLICITY 3, ITS NEAR MISS, AND MULTIPLICITY 2

This section and the next demonstrate how zero-guard processing and post processing
work together to produce good solution accuracy for the multiplicity conditions. Section X
addresses multiplicity 2 near miss.

This section addresses multiplicity 3, its near miss, and multiplicity 2. The analysis is based
on a cubic polynomial p(z) with two equal real roots xo and the third real root xa. Neither
X0 nor xa is zero; otherwise, the Special Case 1, ao = 0 applies. For multiplicity 3 where

XA = X0, we show that the relative quantum uncertainty |6z/zolqu is (3€)1/3 = 8.73x107¢. The
maximum relative solution error imposed by zero-guard processing is 15% greater at
1x107°, but the corresponding relative coefficient errors (Equation (82)) are small at

dazu = da1u = 0, and daou = 2x10715.

The cubic polynomial is

p(z)=z3+azz2+ai1z+ao = (z—xX0)? (zZ—Xa) (106)
where
az = —(xa + 2xo), a1 = 2xaxo + X(Z), a0 = —XaA X%, x0#0, xa#0. (107)
Therefore:
p(z) =0 for Z=1X0 Or Z=XA. (108)

The cubic polynomial’s inherent symmetry allows us to take xa > xo without sacrificing
generality. To demonstrate, let p2(z) have two equal roots xo2 and the third real root xaz
where xa2 < Xo2. Then p2(z) = (z — X02)? (z — xa2). Define xo = —xo02 and xa = —xa2. Then
xA2 < X02 = XA > X0 and

p2(z) = (z+x0)2(z+xa) = z3+ (2xo0 + Xa) 22 + (2XoXa + X§) Z + XA X}
=z3—-azz24+a1z—-a0 =-p(-z).

The properties of p2(z) are the properties of p(z) with all of the signs reversed. The roots
and root errors of p2(z) are the negatives of the roots and root errors of p(z). The error dp2
in function p2(z) is the negative of error dp in p(z). That is: |8pz| = |0p|. We therefore adopt

XA = Xo by convention. (109)

With xa > xo, the double root xo occurs at a local maximum of p(z), and the derivative p'(z)
at z = xa is positive.

In addition to taking xa > xo, normalization by xo simplifies the analysis even further.

Define the following. u=2z/Xo N = xa/Xo pu(u) =p(z)/x3 (110)
Then
pu(u) = ud + azuu? + awu + aou (111)
where
azu=az/xo=—-(m+ 2) aww=ai/x3 =2n+1 aw=ao/x3 =-n. (112)
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The cubic pu(u) has roots 1, 1, and n.

pu(u) = (u-1)%(u-n) (113)
pu(W)=0 for u=1 and u=n. (114)

When xo is positive, then u and z have the same sign, and n > 1. If xa # Xo, then the double
root u =1 occurs at a local maximum of pu(u), and the simple root u = n is greater than 1.

When xo is negative, then u and z have opposite signs, and n < 1. If xa # xo, then the double
root u = 1 occurs at a local minimum of pu(u), and the simple root u = n is less than 1.

Whatever the sign of xo, the derivative pu'(u) at the simple root u =7 is positive.
Setting xa = x0 <> n = 1 produces the multiplicity 3 condition in p(z) and pu(u). The
coefficients in (111) and (112) become

azu=-3 aw =23 ao=-1 for n=1.

Quantum Uncertainty

We can now calculate the quantum uncertainty |[du|qu = |0z/Xo|qu of the multiplicity 3 root

u = 1. The cubic pu(1) is evaluated as the sum
pu(1)=13-3(12)+3(1)-1=1-3+3-1=0.

The magnitude of the sum’s least significant bit is that of its greatest-magnitude term. The
second and third terms both have the greatest magnitude of 3; therefore, the magnitude of
pu(1)’s least significant bit is dpu = 3¢. This pu is the magnitude of the range of pu values
that would be stored in the computer as pu = 0. To find the resulting uncertainty |du|qu in
the root u = 1, solve pu(1 + du) = £dpu for du. Use Equation (113) withn = 1.

pu(l1+06u)=(1+3du—-1)3 =06u®=+dpu==13¢ = |ou| = (3g)1/3

The relative quantum uncertainty of solution xo of a multiplicity-three cubic equation is

|0z/X0lqu = [dulqu = (3€)1/3 ~ 8.73x107¢ (multiplicity 3 quantum uncertainty). (115)

We study multiplicity 3 near miss and multiplicity 2 by incrementally increasing the xa
value above xo. The corresponding n = xa/Xo increases above 1 if xo > 1 or decreases below
1ifxo < 0. For either sign of xo, the magnitude change in n from 1 is |n — 1|. The cubic pu(u)
now has two different quantum uncertainty values of interest: one at the double rootu =1
and one at the simple root u =n.

Start with the quantum uncertainty at the double root u = 1. From Equation (111), the
cubic pu(1) is evaluated as the sum
pu() =134+ az(1?) +aw(l)+aw = 14+azw+aw+an = 0

The magnitude of the polynomial’s least significant bit is that of its greatest-magnitude
term. The magnitude of the greatest-magnitude term is MAX(1, |azu|, |a1u|, |aou|). Applying
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the coefficient values from Equation (112), the magnitude of the polynomial’s least
significant bit is therefore

dpu = MAX(1, |azu|, |a1u|, |aou]) € = MAX(1, m+2|, [2n+1|, n) €. (116)
Use Equation (113) to find the quantum uncertainty |0z/xo|qu. Set pu(1 + 6u) equal to +pu,
and solve for du.
pu(1l 4+ du) =0du2(1 4+ du—n) = +3pu

The desired du is a solution of the cubic equation

dud + (1 —n)ou? — (£3pu) =0 where Opu= MAX(1, n+2|, 2n+1|, ) & (117)
CUBIC EQUATION FOR RELATIVE QUANTUM UNCERTAINTY |dulqu = |6z/X0|qu OF DOUBLE ROOT x0 (u=1)

Selection of this equation’s appropriate solution is described shortly.

For now, consider the quantum uncertainty at the simple root u =n. From (111), the cubic
pu(n) is evaluated as the sum

pu(m) =n3+azun?+awn+awu = 0

The magnitude of the polynomial’s least significant bit is that of its greatest-magnitude
term. The magnitude of the greatest-magnitude term is MAX(|n3|, [azun?|, [a1un|, |aou|), and
the magnitude of the polynomial’s least significant bit is therefore

dpu = MAX(In3|, n+2n% |(2n+1)n|, n)e.

Use Equation (113) to find |0u| = [6z/%0|. Set pu(n + du) equal to +3py, and solve for du.
pu(n +6u) = (M —1+ du)2du = +5pu

The desired du is a solution of the cubic equation

dud + 2(m—-1)du2 + (n—-1)28u — (£dpu) =0 (118)
where dpu = MAX(In?|, (n+2[n? [(Zn+1)n|, n)e.
CUBIC EQUATION FOR RELATIVE QUANTUM UNCERTAINTY [5z/xalqu = |Su/n| OF SIMPLE ROOT xa (u=m)

The relative quantum uncertainty |6z/xa|qu for xa is normalized by xa, but u is defined as
u=z/xo. We therefore divide du by n =xa/xo to obtain |8z/xa|qu:
|0z /xalqQu = |8z /Xo0|/|xa/X0| = |0u/M.

Each of the Equations (117) and (118) has three solutions from which to choose for éu.
The proper choice of solution for each equation depends on the range of xo and on the sign
of the function error +8pu. Table IX summarizes the proper solutions as discussed below.
Following that discussion, Figure 21 plots the resulting quantum uncertainties |5z/xo|qu
and |0z /xalqu as functions of |n — 1| = |(xa — X0) / Xo|.
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Table IX. Selecting from Among Equation (117) and (118) Solutions for du

Cubic equations (117) and (118) each have three solutions: z1, z: = X2 + iy2, and z3 = x3 — iy2. The third
and fourth columns below show which of these three solutions is the proper value of 5u for the condition
defined in the first two columns. The relative quantum uncertainties |6z/Xo|qu and |6z/xa|qu follow
directly from du.

Range of Sign of Double Root Simple Root
Double Function z=x0 u=1 Z=XA u=n
Root xo Error +3pu Equation (117) Equation (118)
x0>0 +3pu ou=1z2=x2+1iy2 ou=1z1 >0
ou = z1 <0 ify2#20 |[du=z2=x2+1iy2 ify2#0
x0>0 opu du=z3=x3 <0 ify2=0 |du=2z1<0 ify2=0
_ du=zz2=x2+1iy2 ify2#0
x0< 0 +0pu du=z1 >0 Su=2z150 ify2 = 0
o . ou=1z1 <0 ify2#0
x0< 0 —Opu ou=1z2=x2+iy2 Su=z3=x3 <0 ify2=0
Quantum Uncertainty = | |3z /Xo|qu = |0u] |0z /Xalqu = [du/7|

Whether the double root u = 1 of pu(u) occurs at a local maximum or local minimum of
pu(u) depends on the sign of xo. The double root xo of p(z) always occurs at a local
maximum of p(z) because the simple root xa is greater than or equal to xo. If xo > 0, then

u = z/xo0 has the same sign as z, and like double root z = xo of p(z), the double root u =1 of
pu(u) occurs at a local maximum. A positive function error +5pu implies that 6u at the

u = 1 local maximum cannot be real. The proper solution of (117) for du at the double root
is the complex solution du = z2 = x2 + iy2. Thus, the double-root quantum uncertainty is
5z /x0lqu = |du| = /X3 + y3. A negative function error —3pu implies, however, that Su at

u = 1 is the only negative real solution of (117). This is either solution z1 at small ) — 1
when (117) has only one real solution or solution z3 = x3 when all three solutions are real.

If xo0 < 0, then u has the opposite sign of z, and the double root u = 1 of pu(u) occurs at a
local minimum. Also, n < 1. A positive function error +3pu implies that du is (117)’s only
positive real solution z1. A negative function error —pu implies that du atu = 1 is the
complex solution ou = z2 = x2 + iya.

Regardless of the xo value, the double-root quantum uncertainty is always given by
|0z /Xo0|qu = |Oul.

At the simple root u =1, the cubic pu(u) has a positive derivative pu'(u) provided that

xa #Xo (N # 1). Typically, the proper solution of Equation (118) for 6u is the real solution of
least magnitude that has the same sign as +8pu. An exception to this rule occurs as follows.
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The cubic pu(u) has two local extrema where pu'(u) = 0. They occur atu =1 and at
u=(2n + 1)/3. The extremum value of pu(u) atu = (2n + 1)/3 is pext = —(4/27)(M - 1)3,a
value opposite in sign to both 1 — 1 and xo. If the sign of +0pu is the same as that of pext, and
if |n — 1] is so small that |pext is less than |+Jdpu|, then du cannot be real and must be
complex. Consequently, the proper solution of Equation (118) is du = x2 + iy2 when the
sign of +3pu is opposite that of xo and

[Pext| = [(4/27)(n = 1)%] < [£3pu] = In—1|<(27[18pul/4)"/>,

Greater values of |n — 1| produce an Equation (118) with three real solutions.

Figure 21 below plots the relative quantum uncertainties |6z/xo|qu and |0z/xa|qu, produced
from the solutions éu of Equations (117) and (118), as functions of |n — 1| = |(xa — X0)/ Xo|.
Figure 21a plots the uncertainties for the range xo > 0 and for both +dpu and —dpu. Figure
21b plots the same uncertainties except that the range xo < 0 applies. Notice that the
overall characteristics of the |6z/xo|qu and |6z/xalqu curves in Figure 21b are similar to those
in Figure 21a. In both 21a and 21b, the double-root uncertainty |6z /xo|qu for —6pu (dashed
yellow curve) is almost identical to that for +3pu (solid black curve). This same comment
applies to the simple-root uncertainty [6z/5xa]qu with an exception in the region of

N — 1| =1075. In 21a, [6z/0xa]qu values for —6pu (dashed green curve) are slightly greater
than for +3pu (solid blue curve). This order is reversed in 21b.

The limiting values of |8z/xo|qu and |0z/xa|qu at very small and very large values of |n — 1|
can be found easily from Equations (117) and (118). In the limit as |n — 1| approaches zero,
nis 1, dpuis 3¢ in both (117) and (118), and the cubic equations in (117) and (118) both
become du3 = +3¢. This implies that |du| = (3¢)1/3, and the uncertainties become

|0z /Xo0|qu = |0u| = |du/n| = |0z/Xalqu = (3€)1/3 ~ 8.73x10°¢ for n—1|— 0.

This value of (3¢)1/3 is noted on the vertical axis on the left side of the plots.

As|n—1]in (117) increases without limit, 5pu becomes 2ng, and the cubic equation in du
becomes —ndu? — (£2ng) = 0 or du? = +2¢. This implies that the relative quantum
uncertainty for the double root becomes |3z /xo|ou = |8u| =v/2& ~ 2.11x1078. This is the same
multiplicity quantum-uncertainty level as that for quadratic equations ([6Z/5Xo]qu in
Equation (88)). As |n—1|in (118) increases without limit, dpu becomes |n3|¢, and the cubic
equation in du becomes 2 du — (£|n3le) = 0 or du = %|nle. Thus |du| = |nle, and the
relative quantum uncertainty for the simple root becomes [6z/xa|qu = [du/n| =

g~ 2.22x10716, These relative uncertainty values of [3z/xo|qu = v/2¢ for the double root and

|0z/xalqu = € for the simple root are appropriately noted on the right border of the charts in
Figure 21a and 21b.
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Figure 21 Cubic-Equation Quantum Uncertainty for Multiplicity 2
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Calculated Solution Error

Figure 22 shows example relative solution errors plotted as a function of n — 1 for the
example double root zz = x2 = z3 = x3 = Xo = 1.2. At each n trial value, the third root is z1
= xa = xon = 1.2n. Equation (107) then produces coefficients az, a1, and ao for the cubic
equation p(z) =z3 +azz?+aiz+ao = 0 to be solved.

The figure plots solution errors for two different cubic-equation computation methods.
Figure 22a shows results for solutions calculated using the round-off-error mitigation
design: the Figure 9 cubic-equation algorithm, the Figure 12 cubic-equation post-
processing algorithm, and the Figure 8 quadratic-equation algorithm. Figure 22b shows
results for calculation without mitigation using the Figure 1 algorithm. For reference,
Figure 22 also plots the quantum uncertainties |8z/xo|qu and 8z/xa|qu from Figure 21a.

The figure’s relative errors for solutions z1, z2, and z3 are calculated as follows:

8Z2 6Z3
= 87301 = |2
0 ’ 4 Xo

074

A

Z1 — XA Z; — Xp Z3 — Xp

|8Z1u| = ’ |822u| = = . (119)

XA Xg X0
The pattern of relative solution errors displayed in Figure 22a is typical for any real xo
value. Compared to the errors in 22b, which are calculated without round-off error
mitigation, the errors in 22a calculated with mitigation are, for the most part, substantially
less and produce a more regular plot pattern. This plot pattern for n —1 < 1 in Figure 22a
is due entirely to zero-guard processing in the Figure 9 cubic-equation algorithm as now

explained.

The far-left portion of Figure 22a is labeled Special Case 2. In this region where,
n—1<1.3x1077, the n — 1 value is so small (n is so close to 1, xo is so close to xa) that zero-
guard processing resets g, r, and R to zero. With q =r = 0, the algorithm branches to
Special Case 2, and calculates the three cubic-equation solutions as the same real value:

z1 =X2=Xx3=-az/3 = (xa + 2x0)/3 instead of the true values z1 = xa, X2 = X3 = Xo.

In normalized form the calculated solutions are

7, 1 ) Xy X3 1 .

— =—(m + 2) instead of 1, — = — = —(n+2) instead of 1.

Xa 3m Xo Xp 3
The relative errors become
|0Z1u] =Nn+2)/Bn)-1] = |-2(n-1)/(Bn)|= 2(n-1)/3 for smalln -1, and
|0Z2u| = |0Z3u] = (N +2)/3 - 1] = (n-1)/3.

All three are proportional to n—1. The zz and z3 relative errors equal each other; the z1
relative error is twice their value.
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Figure 22 Example Cubic-Equation Relative Solution Error — Multiplicity 2
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The next portion of Figure 22a is labeled Special Case 4 and includes n — 1 values from
1.3x1077 to 3x1075. Here, the calculated value of q is negative (as it should be), but r is still
reset to zero, and Special Case 4 applies. The Figure 9 algorithm calculates the cubic-
equation solutions as three evenly-distributed real values:

z1=-az/3+s, x2= —az/3, x3=-az/3-s where s=,/[3q] and az=-(xa+ 2xo).

Equations (5) and (107) show that q is
q=—-(xa—x0)2/9, whichimpliesthat s=+/3 (xa—x0)/3.

The calculated solutions are

1
21 =3 [xa + 2%, + V3(xp — Xo)| instead of x,

1
Xz =3 [xa + 2Xo] instead of x,

1
X3 =3 [XA + 2% — V3(xp — xo)] instead of x,

with y2 = 0. The relative errors become

1 2 -3

18z1,| = ﬁ[”+2+‘/§(“_1)]_1| = 3 Mm—1) 0089 (m—1)
1 1

8720] = |z +21 - 1] =3(-1) ~0333 (- 1)
1 3-1

1823, | = §[n+2—\/§(n—1)]—1| =\/_3 (Mm—1) ~ 0.244 (n — 1).

Again, all three relative solution errors are proportional to n — 1. In the expression above
for |8z1u|, the fraction (2 —+/3)/(37n) is approximately equal to (2 —+/3)/3 because n — 1 is
less than 1074, so 1 is very close to 1.

The maximum relative solution error occurs at n — 1 = 3x1075, the right edge of the Special
Case 4 region in Figure 22a. This maximum error value is [8z2u| # 1x107>, only 15% greater
than the multiplicity 3 quantum uncertainty of (3¢)1/3 ~ 8.73x107.

More importantly, the solutions calculated with the mitigation design are very accurate
when judged against the cubic-equation coefficients. The coefficients a2 and a1 generated
from the calculated solutions using Equations (2) or (3) are identical to the algorithm input
coefficients az and a1. The coefficient ao generated from the calculated solutions using
Equations (2) or (3) reproduces the algorithm input ao accurate to 15 significant figures.

To demonstrate these facts, normalize by xo the formulas above for the calculated solutions
71, X2, and x3:
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Zu=z1/X0 =[N+ 2 +v/3(m-1)]/3
Xu=X2/X0=(M+ 2)/3
Xu=X3/Xo =[N +2-v3(m-1)]/3

where y2u = 0. Use Equation (3) to calculate the corresponding cubic-equation coefficients:
aZu=—(T]+2) alu=21’]+1 30u=—n+22_7(n—1)3.

The results for azu and a1u are the same as the normalized input coefficient values in
Equation (112). The aou value differs from the one in Equation (112) by 22—7 (n — 1)3. This

difference, evaluated atn — 1 = 3x1075 (the n — 1 corresponding to maximum solution
error) is 2x10715. Thus, the calculated cubic-equation solutions reproduce the input
coefficients az and a1 exactly and ao accurate to nearly 15 significant figures.

Relative solution error in Figure 22a instantly drops six orders of magnitude at

N —1=3x1075. This sudden decrease occurs because q and r now have sufficient
magnitude that zero-guard processing maintains their original calculated values. The
processing correctly resets any non-zero calculated R to zero (Special Case 3), so calculated
solutions reflect the multiplicity 2 condition. Relative solution error continues to drop to
10716 or less as n — 1 increases to about 10. As noted at the bottom of the figure, any
relative solution error less than 10716 is plotted as 10-16.

The mitigation design invokes post processing to recalculate the two near-miss solutions z2
and z3 for n — 1 greater than about 1.9. The recalculation maintains the very small relative
solution errors near 10716 as 1 — 1 grows large. The onset of recalculation nearn—-1=1.9
corresponds to the value of £ = 0.345 in Figure 12. To show this correspondence, recall
that n = xa/xo where xa > xo. The Figure 12 algorithm recalculates the two smaller-
magnitude solutions near xo approximately when [xo| < {|xa|, that is, when [xa/Xo| = xa/X0
=n>1/C. Since { = 0.345, the algorithm recalculates the two smaller solutions when
n>1/=1/0.345~ 2.9, which impliesn -1 > 1.9.

By contrast, solution errors without post processing in Figure 22b grow larger due to
magnitude-type error magnification as n — 1 increases above about 10.
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X. CUBIC EQUATION ANALYSIS - MULTIPLICITY 2 NEAR MISS

This section extends the previous section’s analysis to the multiplicity 2 near miss
condition, where again the mitigation design provides good solution accuracy. The three
cubic-equation solutions are now

Z1=XA, Z2=Xo+Az and z3=xo—Az where Xxa>Xo.

Quantity Az is either a nonnegative real value Ax or a positive pure imaginary number iAy.
Relative quantum uncertainties for the near-miss solutions are calculated as a function of
1 =xa/x0 and Az/xo. The relative zero-guard range |Az/zo|zc is a function 7, but can change
dramatically if post processing recalculates the two near-miss solutions when [xo| < [xa|.
The recalculation occurs approximately when [xo/xa| = |1/1| < £ where { is the Figure 12
post-processing constant. With the proper choice of £ value, post processing not only
eliminates magnitude-type round-off error magnification, but it also controls the size of the
zero-guard range and its induced error.

The value { = 0.345 is selected to minimize relative coefficient error produced by zero-
guard processing. With this C value, the relative coefficient error induced by zero-guard

processing is a maximum of 3.3x1071> for all three coefficients and the maximum ratio
ZG/QUis 2.3.

Although the title of this section specifies multiplicity 2 near miss, we allow the
combination |(xa — Xo0)/Xo0| << 1 and |Az/xo| << 1, which is actually an alternate form of
multiplicity 3 near miss. We also allow Az = 0 for multiplicity 2.

The cubic polynomial for multiplicity 2 near miss is

p(z) =z3+azz2+ai1z+ ao (120)

p(z) =(z—-721)(z—22)(z—23) = (z—Xa)(Z — X0 — Az)(z — X0 + Az) (121)
where

a2 = —(z1+z2+2z3) = —(xa+ 2xo) (122)

a1 = 7122 + 7123 + 2223 =  2XaXo + X§ — Az? (123)

a0 = —Z12273 = —xa (x3 — Az?). (124)

Quantum Uncertainty for Real Az

This subsection derives quantum uncertainty for real Az, but it also plots quantum
uncertainty and sample calculated solution error for both real and imaginary Az.

The case of real Az = Ax > 0 implies that p(z) has three real roots:
Z1 = Xa, Z2 = X2 = X0 + AX, z3=x3=Xo—Ax for real Az = Ax. (125)

The real roots x2 and x3 are separated by the difference 2Ax.
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The equation p(z) = 0 holds for z equal to any of the three roots: xa, x2, or x3s. We first
examine z = x3, for which p(x3) is evaluated as the sum

p(x3) = x3 +a,x% +a;x3+a, = 0.
The magnitude of the sum’s least significant bit is that of its greatest-magnitude term. The
least-significant-bit value dp of the sum is therefore
8ps = MAX(Ix3], 13,33, [asxsl, lag & > 0. (126)
This dps is the magnitude of the range of p values that would be stored in the computer as

p=0.

To find the corresponding uncertainty |8x3|qu in the root z = x3, solve the equation
p(x3 + 0x3) = —3ps3 for dx3. (The rationale for the negative sign in this expression will be
explained shortly.) Use Equation (121) for p(z) with z = x3 + 6x3 = X0 — AX + 8x3s.

(x3 + 0x3 — 1) (x3 + Ox3 — x2)(02z3) = (X0 — AX + Ox3 — Xa) (—2Ax + 0x3) (0x3) = —Op3
Simplify to arrive at the cubic equation in 6xs.

8x3 — (x5 — Xg + 3A%)8x3 + 2Ax(Xy — Xo + AX)8X5 + Spz = 0 (127)

We choose the negative sign in p(x3 + dx3) = —0p3 to assure that 6x3 always has a negative
real value. This is so because xa > xo, which implies that p(xo) is a local maximum and that
the derivative p’(x) is positive for x < xo. The root x3 = xo0 — Ax < Xo, so p’(x3) > 0. Thus,
p(x3 + Ox3) = —Ops3 assures that dx3 < 0 regardless of the magnitudes of Ax and ops.

The upper bound of Ax is (xa — x0) /3. This value corresponds to the root x2 = xo + Ax
having a value midway between roots x3 = xo — Ax and z1 = xa. Thatis, x2 —x3 = xa —x2. We

cannot use Ax any greater than (xa — xo) /3, for then x2 would be closer to xa than it is to x3.

Normalize Equation (127) by x3 to obtain a cubic equation in 8x3/xa.

8x31° — Xy + 3Ax [ 2A — Xy + AX) [8 5
[ﬁ _ XA~ Xo X[X3 X(XA Xo X) X3] ( P3 —0 (128)

X3 Xy — Ax — AXx)? X3 Xy — Ax)3

[t appears that the coefficients depend on three variables: xa, xo, and Ax. Note that dp3
depends on these same three variables via Equations (126) and (122) to (124) where

X3 = X0 — Ax and Az = Ax. Our normalization, however, allows us to reduce the three
variables xa, X0, and Ax to only two. In the special case xo = 0, the coefficients depend only
on xa and Ax.

[8x3 3 N XA + 3Ax [6X3 2 N 2Ax%(xp + AX) [8x3 dps

e =0, x,=0 (129)

X3 X3 1 Ax3

Otherwise, the coefficients of Equation (128) become functions of a sign function and the
two normalized variables 1 = xa/x0 and Au = Ax/Xo:
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8x31° M — 14 3Au [8x31° 2Au — 1+ Au) [8x R
3] _ [ 3 (M ) 3] _ OP3u — 0, x,#0 (130)
X3 C1—-Au (1 — Au)? (1 — Au)3
where
XA AX Op3
_Xa Au= =, 5Py = 131
Xo u Xo P3u Xg ( )

dp3u = sgn(xo) MAX[|(1-Au)3|, |((n+2)(1-Au)?, |(Zn+1-Au?)(1-Au)|, n(1-Au?)|] &, (132)

and

1 ifxg >0
sgn(x,) = { 0 ifxyg = 0 (notused). (133)
-1 ifxy <0

For xo # 0, the relative quantum uncertainty |0x3/x3|qu for solution x3 is the minimum
absolute value of the three Equation (130) solutions. When xo > 0, |0x3/X3|qu is the absolute
value of the only negative solution.

Case: x0# 0

Figure 23 below applies Equations (130) through (133) to plot the relative quantum
uncertainty |0x3/xs|qu versus |Au| = |Az/xo| = |Ax/xo| for three representative values of n —1
using the heavy, yellow curves. The uppermost curve correspondston —1 = 1x10"% At
the smallest |Az/xo| values, x2 and x3 are nearly equal, so that the |0x3/x3|qu value of about
2x107¢in Figure 23 corresponds to this same value for the multiplicity 2 quantum
uncertainty |6z/xo|qu in Figure 21 (black and dashed yellow curves) atn—1 = 1x107

This same correspondence between Figures 21 and 23 applies to the other two |0x3/x3|qu
curves in Figure 23. For the middle curve,n—1 = 0.00833, and the maximum [x3/x3|qu is
about 2.8x1077. For the lowest curve, n — 1 = 52.3333, and the maximum |0x3/x3|qu is
about 2.1x1078.

The relative quantum uncertainty |6x3/xs3|qu in all three curves tends to decrease as the
relative separation |Az/xo| increases until the curve terminates. The upper two curves
terminate at the point where the root x2 = xo + Ax is midway between roots x3 = xo — Ax
and z1 = xa. Thatis, where x2 — x3 = xa — x2, which implies Ax/x0 = (n — 1) /3. The lowest
curve terminates at Ax/xo = 1 where x3 = 0.

In addition to |0x3/x3|qu, Figure 23 plots the relative quantum uncertainties |0x2/x2|qu
(dashed, red curve) and |0y2/zz2|qu (thin green curve). Both of these values are nearly equal
to |6x3/x3lqu. The value |6x2/x2|qu is the relative quantum uncertainty for root x2 plotted
versus real Az = Ax. Notice how the two upper dashed red curves tend to level out at the
curve termination where root x2 is midway between roots x3 and z1 = xa. The derivation of
|0x2/x2|qu is given presently and is similar to that of [0x3/x3|qu. The value |8y2/z2|qu, whose
derivation is given later, applies when Az = iAy is imaginary. See Equations (146) to (148)
below.
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Figure 23 Cubic-Equation Quantum Uncertainty for Multiplicity 2 Near Miss
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The derivation of |0x2/xz|qu starts by using Equation (121) for p(z) to solve the equation
p(x2 + dx2) = —Op2 for dx2 where

Spz = MAX(|x3], |ayx3|, |a;x; |, [ag) € > 0. (134)
The result is the following cubic equation for 6xa.
8x3 — (xa — Xg — 3AX)8x3 — 2Ax(Xp — X — AX)8X, + Sp, = 0. (135)

Comparing Equations (134) and (135) to (126) and (127), we see that dpz, X2, and dx2
replace 0ps3, x3, and 0x3 and that —Ax replaces Ax.

We choose the negative sign in p(x2 + 6x2) = —0p2 to assure that Equation (135) produces a
proper positive real solution for dx2. The value dp2 in Equation (134) is positive. Given any
Ax in the range (0, (xa — x0)/3), both the quadratic term and linear term of Equation (135)
are negative for positive 6x2. One or both of these terms dominate the cubic term
depending on the value of Ax. Thus Equation (135) has the desired positive real solution
for oxa2.

The cubic equations in x2/x2 corresponding to Equations (128), (129), and (130) become
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43

[ X, | Xo + AX

Xp — Xg — 3AX [52 2 _ 2Ax(xa — X0 — AX) 8&] dp, 0 (136)

X, (xo + Ax)? X5 (xo + Ax)3 -
3

[OXo ] X — 3AX [6x,1%  2Ax(Xa — AX) [8x 0
Oz _faT 047 [_2 _ 28x(xa = AX) )[_2+ p2—o, Xo=0, Az=Ax  (137)

[ X, | Ax Xy Ax? X5 Ax3

5%,1° —1—3Au [8x,1° 2Au(n—1— Au) [8x )

%a]” _m [_2 _ 2Au(n ) [z Pu o Lo (138)
[ X, | 1+ Au Xy (1 4+ Au)? X, (14 Au)3

The value dp2zu corresponds to dpsu in Equation (132):
dpzu = sgn(xo) MAX[|(1+Au)3|, |((n+2)(14+Au)?|, |(2n+1-Au?)(1+Au)|, In(1-Au?)|] . (139)

The relative quantum uncertainty |6x2/xz|qu for solution x2 at xo # 0 is the minimum
absolute value of the three Equation (138) solutions. It is plotted as the dashed red curve
versus Au = |Az/xo| in Figure (23) above. When xo > 0 and Ax/x0 < (n —1)/3, the solution
of Equation (138) with the minimum absolute value is a positive solution. This
corresponds to the positive solution dx2 of Equation (135).

Figures 24, 25, and 26 below plot trial values of solution relative error versus |Az/Xo| for the
three n — 1 values in Figure 23 using xo = 1.2. The xa value for each of the three figures is
XA = Xon = 1.2n.

Figure 24 n-1=52.3333 XA = 64
Figure 25 n-1=0.00833 xa=1.21
Figure 26 n—-1=1x10+* xa =1.20012

Figures 24a, 25a, and 26a show error for solutions calculated with the mitigation design:
the Figure 9 cubic-equation algorithm, the Figure 12 cubic-equation post-processing
algorithm, and the Figure 8 quadratic-equation algorithm. Figures 24b, 25b, and 26b show
error for solutions calculated without the mitigation design using the Figure 1 algorithm.

For the relative errors |0x3/x3| (yellow squares) and |0x2/Xz2| (red circles), the separation
Az = Ax is real, and the true xz and x3 values are x2 = xo + Ax and x3 = xXo — Ax. The
horizontal-axis variable is |Az/xo| = |AX/Xo| = |Aul.

Figures 24a, 25a, and 26a with the mitigation design also plot relative error |0y2/z2| (green
circles); Figures 24b, 25b, and 26b without the mitigation design also plot relative error
|0z2/72| (black circles). The corresponding separation Az = iAy is imaginary, and the true x2
and x3 values are x2 = xo + iAy and x3 = Xo — iAy. The horizontal-axis variable is

|Az/x0| = |Ay/%0|. The mitigation design produces solution error with a negligible real
component, so only the imaginary error component is contained in |8y2/z2| (green circles).
Without the mitigation design, either the real or imaginary component may dominate the
solution error, so |0z2/z2| (black circles) includes both components.
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Figure 24 Example Solution Error, Cubic Multiplicity 2 Near Miss forn —1 = 52.3333
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* Note: Any relative solution error value less than 10716 is plotted as 10726,
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Figure 25 Example Solution Error, Cubic Multiplicity 2 Near Miss for n — 1 = 0.00833
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Figure 26 Example Solution Error, Cubic Multiplicity 2 Near Miss forn—1 = 1x10#
xo=1.2, xa=1.20012 n=xa/xo, MN—1=Ea—Xo)/Xo
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As a reference, the figures also plot the appropriate relative quantum uncertainties from
Figure 23.

The pattern of quantum uncertainty and error values in Figure 24a (n — 1 = 52.3333) with
the mitigation design are typical for any multiplicity 2 near-miss cubic equation with a

In — 1| value of 1 or greater, just as the double-root values of [6z/xo|qu in Figure 21 change
little for | — 1| of 1 or greater. It makes little difference whether xo is positive or negative
or whether Az is real or imaginary, the plots of quantum uncertainty and computed
solution error with the mitigation design are all similar.

Zero-guard processing assures accurate calculated solutions for the multiplicity 2 condition
Az = 0 and z2 = z3 = Xo0. As Az/Xo increases up to multiplicity the relative zero-guard range
|Az/zo|zc (in this case 3.82x1078), the calculated z2 and z3 values remain equal to each other.
The plotted relative error values increase in proportion with Az/xo. The peak relative
error becomes the relative zero-guard range |Az/zo|zc. That value in this case is 3.82x1078,
about 1.8 times the maximum quantum uncertainty at Az = 0. However, this measure of
relative error assumes that we have a priori knowledge of the true solutions. The only true
values available in actual practice are the cubic-equation coefficients.

To evaluate solution accuracy against the input cubic-equation coefficients az, a1, and ao, we
use the calculated solution values zic, z2c = x2c + iyzc, and z3c = x3c— iy2c and Equations (3)
to calculate the check coefficients azc, aic, and aoc. Solution accuracy can then be judged
from the relative coefficient errors defined in Equation (82) and repeated here.

dzc — a2

dc— dgc — Adp

dp

6321,1 =

) Salu =

) Saou =

(82)

a; a;

Against this measure, solutions calculated with the mitigation design in the examples above
are very accurate. The relative coefficient errors are consistently on the order of 10715 or
less.

We shall return to this topic of solution error induced by the zero-guard range at the end of
this section after we derive formulas for the zero-guard range. There we show that relative
coefficient error induced by the zero-guard range is a maximum of 3.3x1071> for all n with
the post-processing constant = 0.345.

Figure 24a shows that the relative solution error abruptly drops an order of magnitude as
|Az/x0| surpasses the relative zero-guard range |Az/zo|zc = 3.82x1078, and the calculated z2
and z3 values are no longer reset to xo. Because z2 and z3 approximate xo and

|xo/xa| =|1/m| < { = 0.345, the Figure 12 cubic-equation post-processing algorithm uses the
accurately-calculated z1 = xa solution to recalculate the smaller-magnitude solutions z2 and
z3. The post processing holds the relative solution errors to the quantum-uncertainty level
or less.

If instead the cubic-equation solutions are calculated with the Figure 1 algorithm (no
round-off error mitigation), then the z2 and z3 relative errors, shown in Figure 24b,
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consistently exceed the quantum uncertainty by an order of magnitude. These larger
errors occur because the ratios |z1/z2| and |z1/z3| are close to | = [xa /xo| = 53.3333, a ratio
large enough that magnitude-type error magnification exacerbates the multiplicity error
magnification. The mitigation-design post processing eliminates the magnitude-type error
magnification.

The particular values xo = 1.2 and xa = 64 (n = |xa /xo| = 53.3333) were selected for this
trial to show how large the calculated solution error can grow without the mitigation
design. Any combination of xo and xa values such that n — 1| > 1 produces an error plot
similar to Figure 24a when mitigation is used. Solution error is much more variable
without mitigation. Sometimes (for example xo = 1.2, xa = 60 = n= 50) calculation
without mitigation produces accurate solutions for the multiplicity condition (Ax = 0).
Then the error plot at small Az/xo is the same as that with mitigation. The values xo = 1.2
and xa = 64 avoid this situation, and the ratio xa /xo is great enough to produce significant
magnitude-type error magnification.

Figures 25 and 26 above plot calculated-solution relative error versus Az/xo for the two
small ) — 1 values of Figure 23. Again xo = 1.2. Figure 25 has xa = 1.21 and
n—1=0.00833; Figure 26 has xa = 1.20012 and n — 1 = 1x107*. The errors in Figures 25a
and 26a, where solutions are calculated with the mitigation design, show the same regular
plot pattern as in Figure 24a with its largem — 1. The errors in Figures 25b and 26b,
where solutions are calculated without the mitigation design, have plot patterns that are
less regular, but the errors do not exceed the quantum uncertainty. The small n — 1 values
imply that the 0. three cubic-equation solutions are close in value so that there is no
magnitude-type error magnification. The n — 1 is so small and the three cubic-equation
solutions are so close in value that we could properly label Figures 25 and 26 as
multiplicity 3 near miss. The major benefit of the mitigation design at these smalln—1
values is its consistent accurate solutions at the true multiplicity condition Az = 0.

Case:xo =0

We now return to Equations (129) and (137) to show that the relative quantum
uncertainties for x3 and x2 are very small, on the order ¢, for xo = 0 and real Az = Ax. The
mitigation design produces solution relative error that is likewise small, but error grows
very large without mitigation. The case of xo = 0 and imaginary Az = iAy is examined later.

The condition xo = 0, Az = Ax implies that x2 = —x3 = Ax. Equations (122) to (124) for the
cubic-equation coefficients simplify to
a2=-XA a1=-Ax? ao=3xaAx? for xo0o=0,Az=Ax

The upper bound of Ax is limited by the restriction that x2 = Ax cannot exceed the midpoint
between x3 = —Ax and 71 = xa:
x2=Ax < (xa+x3)/2=(Xr-Ax)/2 = 0<Ax < xa/ 3.

From the foregoing, Equations (126) for dp3 and (134) for 6p2 simplify to
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Op3 = dp2 = xaAx?¢, and
Equations (129) for 6x3/x3 and (137) for dx2/x2 become

8x31° Xy [0X31° 5X3

= +(3+&)[X— ) M0 %o=0, Az =Ax
8x,1° 6X2 OX;]  Xa

[— [ 1——AX) —Xz]——AXe 0, X,=0, Az=Ax.

We could solve these two cubic equations for dx3/x3 and 6x2/x2, but the cubic and quadratic
terms are negligible and can be dropped. Solving the resultant linear equations produces

the same absolute values |6x3/x3|qu and |[0x2/x2|qu as do the cubic equations:
OX3 €

- 2(1 + Ax/x4)

0X, €

QU qQu ©2(1 — Ax/Xp)

When Ax/xa = 0, then x3 = x2 = 0, and |0x3/x3|qu = |0x2/x2|qu = €/2. When Ax/xa = 1/3, its
maximum value, then |0x3/x3|qu = 3¢/8, and |0x2/x2|qu = 3¢/4. Thus, the relative quantum
uncertainties |dx3/x3|qu and |0x2/Xz|qu are always less than € for xo = 0.

X0 =0, 0<Ax/x4<1/3.

X3 X5

Figure 27 below plots trial values of solution relative error versus |Az/xa| for multiplicity 2
near miss with xo = 0. The figure shows error for calculation with the mitigation design
and without mitigation. The mitigation design holds relative solution error to the order of
the quantum uncertainty around 10-16. Without mitigation, relative solution error
increases as the reciprocal of |Az/xal. The small-magnitude cubic-equation solutions x2 and
x3 equal +Az, whereas the large solution is z1 = xa. Thus [x3/xa| = |x2/xa| = |Az/xa|. Without
the mitigation design’s post processing, magnitude-type error magnification overwhelms
the small |Az/xa| values.

Quantum Uncertainty for Imaginary Az = iAy

This section derives the formula for the relative quantum uncertainty |0y2/z2|qu when Az
has the imaginary value Az = iAy. This is the same |8y2/z2|qu that appears as the green
curve in Figures 23 through 26.

The cubic polynomial p(z) has the three roots z1 = xa # 0, z2 = X0 + iAy and z3 = xo — iAy.
p(z) = z3+azz?+aiz+ao = (z—xa)(z—22)(z-23) = (z — xa)(z — X0 —iAy)(z — x0 + iAy)  (140)
Equation (3) gives the coefficients as

= —(xa + 2x0), a1=2xoXa + X3 + Ay?, ao=—xa (x5 + Ay?) for Az =iAy. (141)
Because the multiplicity 2 near-miss roots zz and z3 are a complex conjugate pair, we need
examine only one of them: z2 = xo + iAy. The total quantum uncertainty |8zz2|qu =

|0x2+10y2|qu is dominated by the imaginary component as we shall see. Thus, the relative
value |6z2/z2|qu becomes [8y2/z2|qu.
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Figure 27 Example Solution Error, Cubic Multiplicity 2 Near Miss for xo = 0
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* Note: Any relative solution error value less than 10716 is plotted as 1071.

The derivation of |0z2/z2|qu is similar to that of |5x3/x3|qu above for real Az = Ax. The cubic
p(z2) for z2 = xo + iAy is
p(z,) = x3 + i3x2Ay — 3x,Ay? — iAy3 + a,[(x2 — Ay?) + i2x,Ay] + a;(x, + iAy) + ag .
The cubic is real and equal to zero, so p(z2) is evaluated as the sum of its real terms only.
p(z,) = X3 — 3XoAy? + a,x3 — a,Ay? + a;X, +ao = 0.

The least significant bit of this calculated p(z2) is the least significant bit of the term having
the greatest absolute value. The value of this least significant bit is therefore

3py = MAX(Ix5 |, 3%0Ay |, |azx3 |, [a;Ay?, [a1xol, 2o - (142)

For z very close to z2, Opy is the range of p(z) values that could be stored in the computer as
p(z) =0.

We find the quantum uncertainty |6z2|qu in root z2 = Xo + iAy corresponding to dpy by
solving the equation p(z2 + 6z2) = dpy for dz2 = dx2 + idy2. When the imaginary
displacement iAy is 0, then root z2 is the double root xo, which occurs at the local maximum
of cubic p(z). Any real value of 8z2 produces a negative value of p(z2 + 6z2) = p(xo + 0z2).
The relevant solution of p(zz + 8z2) = p(xo + 8z2) = dpy > 0, in that case, cannot be real. To
the contrary, error value 8z2 = 6x2 + idy2 is nearly pure imaginary for Ay = 0. The real
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component dx2 is possibly significant only when Ay increases above 0. Even then,
|0x2| << |0y2|, as we will show.

Solve the equation p(zz + 8z2) = dpy by using Equation (140) with z = z2 + 6z2
= X0 + 0x2 +i(Ay+ dy2).

p(z2 + 8z2) = (z2 + 8z2 —xa)( Z2 + 8z2 — 72) ( z2 + 8Z2 — z3) = dpy
[x0 — XA + Ox2 +i(Ay+ 0y2)](0x2 + idy2) [0x2 + i1(2Ay+3dy2)]| — dpy =0

Expand and simplify the left side of this equation to produce real and imaginary
components, each with several terms. Both the sum of real components and the sum of
imaginary components must equal zero. The result is two equations for the two unknowns
dx2 and dyz.

REAL
8x3 — 30x,8y2 — (x4 — X()Ox5 — 6AYSX,8y, + (X4 — X)Oy2 — 2Ay?5x,

143
+2(xp — X0)Aydy, — Opy = 0 (143)
IMAGINARY
38x238y, — 8y3 + 3Aydx3 (144)

—2(xp — X()0xX,0y, — 3Ay6yZ — 2(Xp — X)Aydx, — ZAYZSYZ =0

The following derivation and simplifying assumptions produce reasonably accurate
solutions dx2 and Jdy: to the above simultaneous equations.

Start with the IMAGINARY equation. Drop the first and third terms, which are quadratic in
Ox2. Solve for oxa.
2Ay? + 3Aydy, + 8y3

2(xa — %0)(8y, + Ay)

This equation shows that |0x2| << |8y2| because (xa — Xo0) and Ay are both positive, dy2 is
assumed positive, and (xa — xo) is assumed much greater than Ay and dyz.

8X2=_

Because |0x2| << |0y2|, the uncertainty value 6z2 = dx2 + i0y2 is dominated by its imaginary
component, and all of the terms containing dxz in the REAL equation, Equation (143), are
dropped. Write Equation (143) as a quadratic equation in dya.

dy2 + 2AySy, — =0.

XA_XO

Divide this equation by |z2|? to normalize dyz by |z,| = w/x(z) + Ay?2.

SYZ y [0Y2 Py
|Zz| |Zz| |z, | |Zz| (XA_XO)

=0 (145)
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We refine this quadratic equation separately for the two cases:
xo # 0, which produces |8y2/z2|qu in Figure (23) above and
xo = 0 for which |8yz/zz|qu is on the order of €.

Case: x0# 0

Define the following:
Av = Ay/|xo| = |Az/Xo| Spuy = dpy/x3. (146)

Equation (141) for the coefficients az, a1, and ao and Equation (142) for 6py give us dpuy as
Spuy = sgn(xo) MAX(1,3Av?, [n + 2|, |(n + 2)Av?|, [2n + 1 + AV?|, [n(1 + Av®)])e  (147)

where 1 = xa/xo from Equation (110). The function sgn(xo) is the sign of xo given by (133).
Equation (145) finally becomes
[ 3y _ dPuy
|2, Vi+aAvzlz|l 1 +Av)(m—-1)

=0 for Az =iAy and x, #0. (148)

The relative quantum uncertainty |0y2/z2|qu for y2 is the minimum positive value of the two
Equation (148) solutions. Itis plotted as the green curve versus Av = |Az/xo| in Figures 23
to 26.

Case:x0=0

The cubic polynomial p(z) for the case xo = 0 has the three roots z1 = xa # 0, z2 = iAy and
z3 = —iAy, (Ay # 0). Thus |z2| = Ay. Equation (140) becomes

p(z) = z3+azz?+aiz+ao = (z—xa)(z—22)(z—z3) = (z — xa) (z — iAy) (z + iAy).
The coefficients of p(z) from Equation (141) are
az=-xa a1=Ay? ao=-xaAy? for Az=iAy and xo0=0,
and Jdpy in Equation (142) is
3py = MAX(0,0,0,x5Ay?, 0, xpAy?)e = xpAy°e.
Quadratic Equation (145) becomes
Syl [
|z, | |Zz|

The value of € = 2.22x10716 is so small that the two solutions are dy2/z2 = —2 and the
relative quantum uncertainty
|0y2/Z2|qu = €/ 2.

Zero-Guard Range and Lower Bound of Post-Processing Constant §

This subsection derives relative zero-guard range |Az/zo|zc for the multiplicity 2 near-miss
condition and shows that the Figure 12 post-processing constant { should have a minimum
value of about 0.25. At this minimum ( value, post processing holds the zero-guard range
to 3.1 times the quantum uncertainty (2G/QU < 3.1). The next (final) subsection shows
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that the selected £ = 0.345 value minimizes relative coefficient error produced by zero-
guard processing and holds the ratio ZG/QU to 2.3.

The cubic-equation post-processing algorithm (Figure 12) uses the constant { as follows.
Given the calculated solutions za, zs, and zc of a cubic equation such that |zc| < |zs| < |zal, post
processing recalculates both zs and zc if |zs| < { |za|. It recalculates only zc if |zc| < {|za| < |zs|.
The recalculation prevents contamination of the smaller-magnitude solution(s) from
magnitude-type error magnification. The two smaller-magnitude solutions are most
sensitive to magnitude-type error magnification when they are nearly equal to each other:
multiplicity 2 near miss. We therefore adjust the value of £ to accommodate the
multiplicity 2 near-miss condition.

Unless explicitly stated otherwise, the term “post processing” in the following discussion
refers specifically to post-processing recalculation of the two near-miss solutions

Z2 = X2 = X0 + AX and z3 = x3 = X0 — AXx when they are also the two smallest-magnitude
solutions. If xo < 0 and xo0 < Xa < —Xo so that solution z1 = xa has the smallest magnitude,
then we will explicitly indicate post-processing recalculation of the simple small-magnitude
solution z1 as appropriate.

We have already demonstrated a primary benefit of using the relatively high value of

€ = 0.345 in Figure 22 for the multiplicity 2 condition and in Figure 24 for multiplicity 2
near miss. Without error mitigation’s post processing, Figure 22b shows that relative
solution error for the small-magnitude double solution z2 = z3 = xo (red dots and yellow
dots) begins a steady increase as the ratio ) — 1 on the horizontal axis climbs above 10.
Here n = xa/xo where xa is the value of the large-magnitude solution z1. The z2 and

z3 worst-case error values at 1 — 1 > 10 are considerably greater than the quantum
uncertainty of 2x1078 shown as the solid black line. By contrast, post processing in Figure
22a holds the relative solution error to around 107 atn -1 > 10.

Given our three cubic-equation solutions z1 = xa, Z2 = x0 + Az, and z3 = x0 — Az, the

Figure 12 post-processing algorithm recalculates the small-magnitude solutions z2 and z3
when |z2| < {|z1| = {|xa|. The displacement magnitude |Az| is small relative to |Xo| in our case,
so that recalculation occurs approximately when [xo| < {|xa| < [x0/xa| = |1/n| <. The
value £ = 0.345 implies that post-processing recalculates z2 and z3 for |n| > 1/0.345 = 2.9.
In Figure 22a, post processing recalculates zz and z3 forn -1 > 1.9.

Figure 24 compares relative solution error with and without error mitigation for the
multiplicity 2 near-miss condition 1 — 1 = 52.3333. The solution error in Figure 24a with
mitigation is markedly less than in Figure 24b without mitigation. At this high n — 1 value,
mitigation’s post processing is responsible for holding down the solution error.

Post processing not only eliminates multiplicity error magnification, but it also controls
solution error caused by a high zero-guard range as exemplified in Figure 28 below. As a
reference, the figure duplicates the relative quantum uncertainty and solution error from
Figure 24b in which solutions are calculated without round-off error mitigation. The value
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of n =xa/xoislarge: n — 1 =52.3333. The purple and light-blue markers indicate solution
error caused by zero-guard processing when it is turned on. Post processing is also turned
on for the light-blue circles, just as in Figure 24a. Here the zero-guard range and
corresponding relative solution error is limited to 3.82x1078. This value is 1.8 times the
relative quantum uncertainty. The purple squares indicate zero-guard solution error when
zero-guard processing is turned on but post processing is turned off. Now the zero-guard
range and corresponding relative solution error climb to 5.6x1077, a value over 26 times
greater than the relative quantum uncertainty.

Figure 28 Effect of Post Processing on Zero-Guard Solution Error, Cubic
Multiplicity 2 Near Miss forn — 1 = 52.3333
Xo=12, Xa=64 n=xXa/X, N-1=Xa—Xo0)/Xo
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1.E-08 = .‘-‘..'_ 62/ s
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Error - .".'o.:“‘
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1.E-10 1.E-08 1.E-06 1.E-04 1.E-02 1.E+00
|AZ/Xo|

At large values of n = xa/xo, the potential solution error caused by zero-guard processing

becomes the driving need for post processing; we therefore use zero-guard range as a

guide for selecting the minimum  value.

The three cubic-equation solutions for the multiplicity 2 near-miss condition are
Z1=Xa#0, 72 = X0 + Az, Z3 =X0— Az (149)

where Az = Ax (real) or Az = iAy (imaginary). Also, xa>xo, Ax>0, and Ay > 0.

Without post processing, the zero-guard range |Az|zc is the maximum Ax or Ay value such
that the zero-guard processing in the Figure 9 cubic-equation algorithm resets the
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calculated parameter R = r? + g3 to zero and then calculates solutions z2 and z3 as the same
real value. The corresponding relative zero-guard range is |Az/xolzc. Because |Az/Xo|zc << 1,
we approximate its value from xa and xo without regard for the displacement Az in
Equation (149). That s, |Az/xo|zc is calculated as a property of the multiplicity 2 condition
Z1 = XA, Z2 = Z3 = Xo.

Post processing, which mitigates against excessive zero-guard range, has its own zero-
guard range. Post processing recalculates zz and z3 as solutions of a quadratic equation.
The post-processing zero-guard range |Az|zc is the maximum Ax or Ay value such that the
Figure 8 quadratic-equation algorithm resets the determinate D to zero and then calculates
solutions z2 and z3 as the same real value.

Later, this section derives formulas to calculate the relative zero-guard range both without
and with post processing. First, however, we present plots of the resulting zero-guard
range values, which indicate that £ should have a value of at least 0.25.

Figure 29 provides a global view of relative zero-guard range |Az/xo|zc versus |n — 1| across
many orders of magnitude. As a reference, the figure also includes the double-root, relative
quantum uncertainty |8z/xo|qu from Figure 21 as the black curve.

Figure 29a for the case xo > 0 is straight forward because xa > xo0 > 0, so 1 = xa/x0 > 1 and
1N —1> 0. Because the double root xo = [xo| is always less than the simple root xa = [xa|,
post-processing recalculation of the smaller-magnitude roots x2 and x3 is possible for any
value of n — 1. The green curve shows relative zero-guard range with post-processing
recalculation, the blue curve without. The “With Post Processing” green curve is dashed
where it predicts zero-guard range values less than the quantum uncertainty; such a
prediction is unreliable in real-world computation.

The Post Processing green curve in Figure 29b for xo < 0 has a limited extent because post
processing is possible only if |xo| < [xa|]. With X0 < 0, [xo| may be greater than, equal to, or less
than [xa|. The inequalities xo < 0 and xo < xa are given, so dividing the inequality xo < xa by
—xo0 produces —1 <—n =xa/(—X0) and 0 <1 —mn. Thus, the horizontal axis of our log-log plot
is 1 — . The post-processing recalculation requirement |xo| < [xa| implies that xa > —xao,
—n>1, and 1-mn> 2. Thus, the green curve for relative zero-guard range with post
processing appliesonly to 1 —n > 2.

In both Figures 29a and 29b, the blue curves show that zero-guard range without post
processing is only a small multiple of quantum uncertainty for |n — 1| less than about 1. As
In — 1| becomes a bit greater than 1, zero-guard range grows many times greater than
quantum uncertainty. This large ratio of zero-guard range to quantum uncertainty at

In — 1| greater than 1 is a potential source of calculation error. We prevent that problem by
employing post processing with the proper choice of constant C.
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Figure 29 Relative Zero-Guard Range With And Without Post Processing versus |n
— 1] -- Cubic Equation Multiplicity 2
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Figure 30 replots the relative zero-guard range from Figure 29 as a function of |[1/m| on a
linear horizontal scale so that we can determine an appropriate minimum value for €. Post-
processing recalculates the small-magnitude solutions z2 and z3 approximately

when |1/n| < . Figure 30 shows that, without post processing (blue curve), the relative
zero-guard range increases rapidly as |1/n| falls below 0.25. Therefore ¢ should have a
value of at least 0.25 to avoid excessive zero-guard range and the resultant solution error.

The following two subsections derive formulas for relative zero-guard range |Az/Xo|zc
without and with post processing. These formulas produce the plots in Figures 29 and 30
above.

Derivation of Zero-Guard Range without Post-Processing Recalculation

The zero-guard range for a cubic equation without post-processing recalculation is defined
in terms of parameters R and Rk > 0 calculated in the Figure 9 cubic equation algorithm. If
R = 0, then two solutions of the cubic equation equal the same real value xo # 0. If the
calculated R value satisfies |R| < Reg, the algorithm resets R to zero and calculates two
solutions as the same real value. The range of R values (—Re¢, RE€) about R =0
corresponds to a range of solution values (zo— Az, zo+ Az) about zo. We call this Az value
the zero-guard range |Az|zc about zo. The relative zero-guard range is |Az/Xo|zc = |Az|zc/|Zo|.

We start with the multiplicity 2 cubic equation with solutions z1 = xa, zZ2 = z3 = Xo. The
cubic polynomial and its coefficients are given in Equations (106) to (109) and repeated
here.

p(z) =z3+azz?+aiz+ao = (z—x0)? (z—xa) (150)
where
az=—(xa+ 2x0), a1=2xaxo+x5, ao=-xax3, xXo#0, xa=0. (151)
p(z) =0 for Z=X0 OI Z=XA

XA > Xo by convention.

The Inequality (109) has xa > xo, but the equality condition xa = xo for multiplicity 3 does
not apply here where the topic is multiplicity 2 and its near miss. We therefore apply only
the strict inequality xa > xo.

The Figure 9 cubic equation algorithm calculates parameters azg, a1, aok, q, gg, I, rg, R, and
Rk as follows.

aze = |az| aie = [ai aoE = [a1 (152)
q=ai1/3 —a2?/9 r = (aza1 —3ao0)/6 —az23/27 (153)
qe = a1e/3 + 2|az| aze/9 re = |a1/6 — a3 /9| aze + |az|aie /6 + aoe/2 (154)
R=r2+ ¢ (155)
Re = 2|r| re + 392 QE (156)
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Figure 30 Relative Zero-Guard Range With And Without Post Processing versus
|1/m| -- Cubic Equation Multiplicity 2
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Apply Equations (151) for coefficients az, a1, and ao and Equation (152) for azg, a1k, and aog
to the formulas above to express q, 1, gi, rg, and Rk as functions of xa and xo.

q=-(xa-%0)?/9 <0 r=(xa—x0)3/27 >0 (157)
2XaXg + X2 2(xa + 2x,)2
% :l aXo * Xpl N (xa 0) (158)
3 9
2XaXg + X2 (X4 + 2X()2 Xa + 2%0||2xa%0 + X2 XaX2
[ G b 2ol ] bl
6 9 6 2
2 3 1 4
Rg =E|XA—X0| rE+ﬁ(XA_XO) dE (160)

Note that Equation (155) for R and (157) for q and r produce R = 0:

(= %0)° | (Z1*(a = %0)° _

36 36 0

R=r2+¢3=

The convention xa > xo implies that the double root x2 = x3 = xo0 of p(z) occurs at a local
maximum of p(z) for real values x of z. We simplify this derivation by taking z to be a real
value z = x so that p(z) = p(x). The cubic p(x), its derivative p’(x), and its second
derivative p"'(x) satisfy p(xo0) = p'(x0) = 0 and p"'(x0) < 0. Thus p(x) has a negative
incremental value (Ap < 0) when x deviates from xo by a positive real increment Ax. That
is, Ap = p(x0—Ax) < 0 and p(x0o—Ax) — Ap = 0. This means that the new cubic polynomial
p(x) — Ap has a root xo— Ax, which corresponds to root x3 = xo of p(x). If the deviation

|xa — Xo| is not too small, then p(x) — Ap also has a root nearly equal to xo + Ax, which
corresponds to root x2 = xo of p(x).

We define Ax with respect to the least real root xo— Ax rather xo + Ax to assure that Ap is
negative regardless of how small [xa — Xo| is. Suppose we had instead chosen

Ap = p(x0+ Ax) < 0 and it happens that xa = xo. Then p(x) = (x —x0)3, and

Ap = p(x0 + Ax) = Ax3 < 0, which is impossible for our positive real increment Ax.

The increment Ax is the relative zero-guard range |Az |zc we seeKk if the parameter R for the
cubic p(x) — Ap is AR such that |AR| = Ree. The derivation of the zero-guard range
Ax = |Az|zc proceeds as follows.

Evaluate the cubic polynomial increment Ap = p(xo—Ax) using Equations (150) and (151).
Ap = p(x0—Ax) = (x0—Ax)3 — (2x0 + xa) (X0 —Ax)2 + (2x0xa + X3) (X0 — AX) — XA X3
Ap = —Ax3 — (XA — X0) Ax?

We have xa > x0 and Ax > 0 by definition, so Ap < 0, Ap = —|Ap|, and the last expression may
be written
Ax3 + (xa — X0)Ax% — |Ap| = 0. (161)

9/24/2021 Page 120 of 136



Cubic Equation Analysis — Multiplicity 2 Near Miss

The cubic polynomial p(x) — Ap has the same quadratic and linear coefficients az and a1 as
does p(x), but the constant coefficient for p(x) — Ap is ao + Aao where

Aap = —Ap = |Ap| > 0.

Equation (153) for q and r shows that this incremental change to ao does not affect q but
does produce a corresponding incremental change to r:

Ar =—-Aao/2 =Ap/2 < 0.

The incremental change in R, Equation (155), becomes
AR =2rAr =r Ap, which implies Ap=AR/r < 0.
The value of r in Equation (157) is positive, so AR is negative. Set AR = —Re¢ so that Ap

becomes
Ap =—-Ree/r,

and Ax in Equation (161) becomes the relative zero-guard range |Az|zc.

Substitute this result for Ap, Equation (160) for Rg, and Equation (157) for r into Equation
(161) to obtain the following cubic equation in Ax.

Ax3 + (X5 — X0)Ax? — |21 + (X4 — Xo)qgle =0 (162)
Divide this equation through by x3 to obtain a simplified cubic equation in the normalized
increment Au = Ax/xo. The equation is simplified because it contains a single parameter, 1

= xa/Xo, as will be demonstrated. The relative zero-guard range will then be
|Az/Xolzc = |Aul.

1
Au® + (m — 1)Au? — g [2rg + (xao — Xo)qgle =0 (163)

u=1z/xo N =xa/Xo

The normalized coefficients azy, a1y, and aou are given in Equation (112) as
azu=az/xo=—-(m + 2) aww=ai/x3 =2n+1 aou=ao/x3 = -M.
The corresponding error size parameters are

azue = |azu| =M + 2| awE = |[aw| =121 + 1 aouk = |aou] = 0.

The normalized versions of q, r, g, and re in Equations (157) to (159) are

qu=q/x0®> = -(m—-1)2/9 ru=r/xo® = (m—-1)3/27
ge _ I2n+1] 2(n+2)?
=— = 164
quE X(Z) 3 + 9 ( )
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rg_[2n+1 (m+2)?
|6 5

+2012n + 1
L Hen |+|T2‘—| (165)

Ty |11 + 2|

Note that to maintain rue as a positive value, re is normalized by |x3| rather than x3.

For the case xo > 0, we have x3 = |x3|, and Equation (163) becomes

A+ (M —DAW? — 2rgg + (M —1Dquele =0  x,>0, Au>0. (166)

CUBIC EQUATION FOR RELATIVE ZERO-GUARD RANGE |Az/xo|zc = |Au]
WITHOUT POST PROCESSING FOR x0 > 0

For the case xo < 0, we have x3 = —|x3| = —x,x3, so the constant coefficient in Equation
(163) must be positive. The coefficient becomes

2rg + (Xpo — X0)qE Xp — X
3 - €= (ZruE + —OquE) €= [zruE + (1 - T])QuE]S-
x5 —Xo
Equation (163) becomes
A — (1 —nAu? + 2rgg + (1 —Mm)quele =0  x,<0, Au<O0. (167)

CUBIC EQUATION FOR RELATIVE ZERO-GUARD RANGE |Az/xo|zc = |Au]
WITHOUT POST PROCESSING FOR x0 < 0

The calculation of relative zero-guard range |Az/xo|zc = |Au| (blue curves in Figures 29 and
30) is summarized as follows. By convention xa > xo where xa is the simple root and xo is
the double root of the relevant multiplicity 2 cubic polynomial p(z). Calculate que and rue
from m = xa/xo0 using Equations (164) and (165). For the case xo > 0, solve Equation (166)
for Au. The relative zero-guard range |Az/Xo|zc is the positive real solution. For the case
X0 < 0, solve Equation (167) for Au. The relative zero-guard range |Az/xo|zc is the absolute
value of the negative real solution.

Equations (166) and (167) show how relative zero-guard range |Az/Xo|zc without post
processing must increase in proportion to |n—1| for large |n—1| in the blue curve of Figures
29 and 30. The quadratic coefficient in those two equations is n—1, so at large |n—1|, the
cubic term becomes irrelevant. The equations become quadratic equations in Au.
Equations (164) and (165) show that both rue and |n—1|que increase as |n3| for large |
Equations (166) and (167) without the cubic term have the quadratic coefficient increase
as [n| and the constant coefficient increase as |n3|, so Au? must increase as n? and

|AZ/Xo|zc = |Au| must increase as |n|.

Post processing avoids this troublesome growth of relative zero-guard range as now
demonstrated.
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Derivation of Zero-Guard Range with Post-Processing Recalculation

This derivation considers the case in which the real, multiplicity near-miss roots

X2 = X0 + Ax and x3 = Xo — Ax of the cubic p(x) are calculated by the Figure 9 cubic-equation
algorithm and are then both recalculated by the Figure 12 post-processing algorithm. The
post-processing algorithm invokes the Figure 8 quadratic equation algorithm to recalculate
z2 = x2 and z3 = x3 as solutions of a quadratic equation. The quadratic equation algorithm
calculates the determinate D and its error magnitude De. The case D = 0 corresponds to
the multiplicity condition x2 = x3 = x0 < Ax = 0. If |D| < D¢, then the algorithm resets D
to zero and calculates x2 and x3 as the same real value. The zero-guard range |Az|zc is the Ax
value that produces the determinate value such that |D| = Dee. The relative zero-guard
range is |Az/xo|zc = |Az|zc / [Xol.

The post-processing algorithm receives the following inputs from the cubic-equation
algorithm: the cubic-equation coefficients az, a1, ao, the corresponding error size
parameters azg, a1k, aok, and the calculated real values z1, X2, x3, and y2 such that the three
cubic-equation solutions are z1, zz=x2+ iy2, z3=x3— iy2. We calculate zero-guard range at
the multiplicity condition z1 = Xa, z2 = z3 = X2 = x3 = Xo, y2 = 0, therefore az, a1, ao, azg, aig,
and aok are given by Equations (151) and (152).

The post-processing algorithm recalculates x2 and x3 as solutions x2 = Z1 and x3 = Z2 of the
quadratic equation Z2 + BZ, + C = 0. Post processing uses the accurately calculated large-
magnitude solution z1 = xa and coefficients ao and a1 to calculate C and B as

C=-ao/xa and B=(C-a1)/xa

The values of ao and a1 in Equation (151) for our multiplicity condition are ao = —xa x§ and

a1 = 2xaxo + x3, so C and B are calculated as C =x3 and B = —2xo.

The algorithm also calculates the error size parameters xag, Cg, and Be corresponding to xa,
B, and C. The formulas are given in Equations (60), (59), and (61) respectively.

xAE = MAX(|xal, |az|) (168)
1
Cg = 7~ (aog + [Clxap) (169)
|xal
By = — ( +a°E+|B+C ) (170)
=——-0I|a — —x
i Xl 18 |Xal XA AR

The post-processing algorithm then provides its values of B, C, Bg, and Ck to the Figure 8
quadratic equation algorithm to recalculate x2 = Z1 and x3 = Z2 as solutions of the quadratic
equation Z2 + BZ, + C = 0. The quadratic equation algorithm calculates determinate D
and its error size parameter Dk as

D=B2-4C and Dg=2|B|B: + 4Ck (171)

For the multiplicity condition z2 = z3 = x2 = x3 = X0, we have

C=x3 and B = -2xq, (172)
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so,D=B2-4C=0.

However, the determinate D is not zero for the near-miss condition x2 = xo + A%,
x3 = X0 — Ax. Coefficient B given by B = —(x2 + x3) = —2xo is independent of Ax. Coefficient
C and determinate D are C = x2x3 = x02 — Ax? and D = BZ — 4C = 4Ax2.

The increment Ax is the zero-guard range |Az|zc when 4Ax2 = D = Dkg, so

DE8 DE
IAZIZG = T and IAZ/X()'ZG = 4-_)((2) € (173)

The value |[Az/xo|zc is the relative zero-guard range, which we now derive and which is
plotted as the green curves in Figures 29 and 30. Apply Equations (151) for ao, (152) for
aog, and (172) for C to Equation (169) for Ck to obtain

XAE
CE = X% (1 + m)

Substitute this equation and B = —2xo0 into Equation (171) for Dt and divide through by
4x02.
D _ Bg XAE

= L 414488
4x§ |l |xal

Use Equation(170) for Bg, and apply Equations (151) and (152) for a1t and aoe and (172)
for B and C. Finally apply the definition n = xa/xo.
Dg 1 1

£ |+ -2
4x§ n| n

X X
AR 4+ 222 (174)

_|_
|XA| |XA|

1
= |2+
n

To determine xag/|xa|, apply az = —(2xo0 + xa) from Equation (151) to xar = MAX(|xal, [az|)
in Equation (168).
xaE = MAX(|xal, [xa + 2xo|) (175)

The case xo > 0 implies xa > xo > 0 and xae = |az| = xa + 2Xao.

XAE_XA+2X0:1+

2
Then x>0 = = -
|Xal XA n

For the case xo < 0, recall that xa > X0 and post-processing recalculation of zz and z3 can
occur only if [xa| > [xo|, that is, if xa > —x0 > 0. Thus, |[xa + 2x0| = [xa — 2[X0|| < |xa| = xa, and by
Equation (175), XaE = |xa| = Xa.

XAE

Then x5 > —x,>0 = —=1.
XAl

The final expressions for De/(4x0?2) in (174)become
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Dg 11 11 (1 2 2
For xo >0 and n > 1, —2=|2+—‘+’—‘+’——2”1+—|+1+‘1+—| (176)
4x5 nl - Inl I n n
F <0 and n<-1, 2E |2+1|+|1|+|1 2|+2 (177)
or x and n< -1, -—S-= - - —— )
° 4§ nl Il I

Use these equations and Equation (173), repeated below, to find relative zero-guard range
|Az/Xo|zc with post-processing recalculation. These values are the green curves in Figures
29 and 30.

D

|AzZ/X0lz6 = (m)g (173)
0

Minimize Zero-Guard-Induced Relative Coefficient Error with = 0.345

This section calculates the relative coefficient error induced by zero-guard processing and
shows that such error is minimized by selecting the value 0.345 for the post-processing
constant C. For a cubic equation with double solution z2 = z3 = xo, zero-guard processing
assures that the corresponding calculated values z2c and z3c are equal to each other
regardless of computer round-off error. The zero-guard range |Az|zc is, however, a
potential source of error. If the true solutions are z2 = xo0 + Az and z3 =Xo— Az
(multiplicity 2 near-miss) and |Az| < |Az|zc, then zero-guard processing will incorrectly
produce calculated solutions z2c and z3c that are equal to each other. This section shows
that any such zero-guard processing error is very small: the maximum relative coefficient
error is 3.3x10715,

The relative coefficient errors dazu, 6a1u, and daou correspond to the cubic-equation
coefficients az, a1, and ao and are defined by Equation (82):

dyc — Ay dic — a4, dpoc — dp

8aZu = ) 1u ) 63011 (82)

a ap g
The check coefficients azc, aic, and aoc in these formulas are produced from the calculated
solutions z1c, z2c = X2c + iy2¢, and z3c = X3¢ — iy2c using the check equations, Equation (3).

Given cubic-equation true solutions
Z1 = XA, Z2 = X0 + Az and 73 = X0 — AZ,

the relative coefficient errors 6azu, da1y, and daou are functions of n = xa/xo, but they depend
also on whether xo is positive or negative and on whether or not post processing
recalculates any solutions.

By convention xa > X0, Equation (109).
The following paragraphs show that the greatest relative coefficient error is daou when

X0 > 0 and da1u when xo < 0. Each of these errors has a maximum value of 3.3x10715 with
€ = 0.345. Lesser values of C increase the maximum daou; greater values of £ increase the
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maximum daiu. Thus assigning ¢ the value 0.345 minimizes the greatest relative coefficient
error to 3.3x10715,

We first present plots of the a2y, a1y, and 6aou and then derive their formulas.

Relative Coefficient Error Results

Figures 31 and 32 below plot 6azy, da1y, and daou versus n with £ = 0.345. Figure 31
presents the case xo > 0, Figure 32, the case xo < 0.

Figure 31 shows the simpler case: xo > 0, which implies that xa > x0 > 0 and n = xa/x0 > 1.
Post processing recalculates the multiplicity 2 near-miss solutions when |z2| = xo < xa, that
iswhenn =xa/x0o>1/L~2.9. Whenn <1/, there is no post-processing recalculation,
which produces 6azu = da1u = 0 and a daou (red curve) that increases monotonically with 7.

Figure 31 Zero-Guard-Induced Relative Coefficient Error with { = 0.345 and xo > 0
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Relative /
Coefficient
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The maximum daou is 3.3x10715, This is the no-post-processing value of daou at the
transitionn =1/ = 2.9. If { were any less than 0.345, then the transition valuen =1/C
would be greater than 2.9, the transition point would move to the right, and the maximum
relative coefficient error would increase above 3.3x10715 as shown by the red dashed
curve.

Figure 32 below plots the relative coefficient errors dazu, da1u, and daou for the case xo < 0.

Figure 32 Zero-Guard-Induced Relative Coefficient Error with £ = 0.345 and xo< 0
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The inequalities xo < 0 and xa > xo imply that n = xa/x0 has a maximum value of 1, which
occurs when xa = x0 < 0. As xa increases above xo = —|xo|, N decreases without limit.

Figure 32 above plots dazy, da1u, and daou versus —m = xa/(—xo), which increases as xa
increases. Post processing recalculates zic (the calculated value of the simple root z1 = xa)
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when [xa| < {|xo|, that is when | n| < or — < —n <. Post processing recalculates the two
near-miss roots zzc and z3c when [xo| < {[xa|, that is when —n > 1/C.

The maximum relative coefficient error is da1u = 3.3x10715, which occurs at the upper
bound —m = £ = 0.345 of post processing recalculation of zic. If { were any greater than
0.345, then the transition point -} = { would move to the right, and the maximum relative
coefficient error would increase above 3.3x10715 as shown by the green dashed curve. The
dramatic increase of error 6aiu = |(aic —a1)/ai| with —n occurs because coefficient a1 goes
to 0 at -n = 0.5. Equation (112) shows this:

ai=(2n+ 1)x¢ = a1 =0 whenn =-0.5.
This problem affects 6aiu only when there is post-processing recalculation as shown below.
Without post processing, zero-guard processing calculates roots zic, z2c, and z3c such that

check coefficients azc and aic are exactly equal to the true coefficient values. Then azc = a2
and aic = a1, which implies that dazu = da1u = 0.

The remainder of this paper derives the formulas for the zero-guard-induced relative
coefficient errors dazu, da1y, and daou as plotted in Figures 31 and 32 above.

Derivation of Relative Coefficient Errors without Post Processing

We examine first the case of no post processing. The Figure 9 cubic-equation algorithm
calculates solutions z1, z2, and z3, but there is no post-processing recalculation of any of the
solutions. The true solution values of the multiplicity 2 cubic equation are

Z1=XaA, Z2=%X0+Az and z3=Xo—-Az
where xa > x0 and Az is positive real.
The Figure 9 algorithm calculates parameters azg, a1, aok, q, gk, I, rg, R, and Re according to
Equations (152) to (156) above. The zero-guard condition |Az| < |Az|zc is equivalent to

IR| < Ree. Under this condition, the algorithm calculates the three cubic-equation solutions
as

zic=2s—az/3 and z2c=z3c=-s—az/3 where s=,/-q andq<0. (178)
The check coefficient azc from Equation (2) is

azc = —(zic+ z2c+23¢c) = —(2s—az/3-s—az/3-s—az/3) = az

d2c = d2.

The check coefficient aic from Equation (2) is
aic = zic(zzc + z3c) + z2czac = (2s —az/3)(-2s — 2az/3) + (-s —az/3)? = -3s2+a3/3
aic = 3q +a3/3.

Equation (153) gives q as q = a1/3 —a22/9 so that
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dic = di.

Thus, with no post processing and |Az| < |Az|zq, the zero-guard processing in the Figure 9
algorithm calculates solutions zic, zZ2c, and z3c such that the check coefficients azc and aic
are identical to their input coefficient counterparts az and ai. The corresponding relative
coefficient errors 6azu and da1u of Equation (82) are therefore both 0.

‘ dazu =0aiwu =0  without post processing ‘ (179)

We can now calculate the relative coefficient error daou based on the results azc = a2 and
aic = ai for the zero-guard condition |Az| < |Az|zc < |R| < Ree. Equations (122) to (124)
give the input coefficients as

az = —(xa + 2xo) a1 = 2xaxo + Xx§ — Az2 a0 = —xa (x5 — Az?).
Equations (2) give the check coefficients as

azc = —(zic + z2c + z3c) aic = zic(zzc + z3c) + Z2czZ3c aoc = —ziczzczsc. (180)

Define the quantities & and 64 as
O = Z2c — Xo, OA=7Z1C—XA.

Calculated solutions zzc and z3c are equal (z2c = z3c = —s — az/3), so they must be real, and
we may write the three calculated solutions as

Z1c = XA + 0aA
Z2¢ = Z3¢ = X0 + 0. (181)

The check coefficient azc is
azc = —(zic + z2c + z3¢) =—(Xa + 0a + 2x0 + 29), and the input coefficient az is

az = —(xa + 2Xo).
The equality azc = az therefore implies that 64 = —-29, and
zic = xa — 20. (182)

We can now find  from the equality aic = a1. The check coefficient aic is

aic = zic(zzc + z3c) + z2cz3c = (xa—20)(2x0 + 20) + (X0 + d)2.

[t is equal to the input coefficient a1 given by
aic = a1 = 2xaxo + x5 — Az

These last two equations combine to produce the following quadratic equation in 3.
5% —%(XA —X0)0 — %Azz =

Normalize this equation by dividing it through by x2.
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2 1
52 — 5(” —1)8, — §Au2 =0 where 6,=06/x, and Au=Az/x, (183)

Of the two du solutions, we use the one of smaller absolute value. Use the Numerical

Recipes solution of Figure 8.
5 =1 Au? (184)
= —sgn(n —
! In— 1] +/(n — 1)? + 3Au?
The function sgn(x) is the sign of x, (Equation (133)). Note that sgn(n — 1) = sgn(xo)
because 1 = xa/xo0 and xa > Xo.

Apply the calculated solutions in Equations (181) and (182) to the formula for check
coefficient aoc in Equation(180). Then normalize by x3.

aoc = —z1czaczac = —(xa—28)(x0 +8)2 = aoc/xpg = —(n — 28u)(1 + du)?
The corresponding formulas for ao and ao/xj are
a0 = —xa (x3 — Az?) = ao/x; = —1N(1-Au?).

Use these formulas for aoc/x3 and ao/x} to find the zero-guard relative coefficient error
daou.

3 3
dgc/Xo — a0/Xp

aO/Xg

dpgc — dp

dagy, =

=X
The result is

2(n — &y, + ( — 4)8% — 283 4+ nAu?

n(1 — Au?) (185)

8a0u = ‘

The maximum daou corresponds to a Au = Az/xo equal to the relative zero-guard range
|AZ/Xo|zG.

Calculate the maximum 6aou versus n for xo > 0 and xo < 0 as follows. If xo> 0, thenn > 1. If
X0 < 0, then n < 1. Calculate que and rue with Equations (164) and (165). For xo0 > 0,
calculate Au as the positive real solution of Equation (166). For xo < 0, calculate Au as the
absolute value of the negative real solution of Equation (167). Finally, calculate du and daou
using Equations (184) and (185).

This daou is plotted as the solid red curve in Figures 31 and 32 for those ranges of n where
there is no post processing. The corresponding dazu and da1u are zero for those ranges of n
per Equation (179).

Derivation of Relative Coefficient Errors with Post-Processing Recalculation of z2c and zsc

We now derive the zero-guard-induced relative coefficient errors dazu, a1y, and daou when
the Figure 12 cubic-equation post-processing algorithm recalculates the multiplicity 2
near-miss solutions zzc and z3c from the Figure 9 cubic-equation algorithm. For the most
part, these relative coefficient errors are smaller than the daou just derived for the no-post-
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processing case. The major reason is that zero-guard range is usually smaller when post
processing recalculates zzc and z3c. See the comparison of zero-guard ranges in Figure 29
above. As in the no-post-processing case, relative coefficient errors dazu, daiu, and daou are
to be expressed as functions of n for xo > 0 and xo0 < 0.

To find dazy, da1u, and daou, we first need expressions for the calculated solutions z1c, z2c,
and z3c produced by the combination of Figure 9 and Figure 12 algorithms. We can then
calculate the corresponding check coefficients azc, aic, and aoc and relative coefficient
errors dazy, 6aiu, and daou.

The post-processing algorithm does not change the Figure 9 calculated value zic, so the
relevant zic is that of the zero-guard processing in the Figure 9 algorithm and is given
above in Equation (178).

zic=2s—az/3 = 2,/-q —az/3 where q=ai1/3-az2?/9
From Equations (122) and (123),
az = —(xa + 2x0) a1 = 2xaxo + x§ — Az2

Combine the equations above to obtain the normalized calculated solution, uic = zic/Xo.

1
Uie = Zy0/Xo = §[n +2+ 2 sgn(x,) /(n — D + 3807 (186)

The relevant values of (n — 1)2 and 3Au? in the radicand differ by almost 15 orders of
magnitude. Figures 31 and 32 show that post-processing recalculation of z2c and z3c occurs
for |n| greater than 2.9, so (n — 1)2 is greater than 3.6. The value Au = Az/xo is evaluated as
the post-processing relative zero-guard range |Az/xo|zc, whose value is about 4x1078 as
shown by the green curves in Figure 29. The value of 3Au? is thus about 5x10715,

This great magnitude difference between (n — 1)2 and 3Au? means that round-off error will
swamp the contribution of 3Au? to uic when Equation (186) is evaluated. The equation
needs to be modified so that the relative coefficient errors dazuy, da1u, and daou can be
accurately determined.

Extract (n — 1)2 from the radical in Equation (186) to give

1
mc=§h+2+2%MmHn—HV1+%]

where

3Au?
efm and 0 < 0 << 1.

Approximate v1+ 260 as 1+ 6.

1
Usc =§[n + 2+ 2sgn(xe) In — 1] (1 + 0)]
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Whether xo > 0 or xo < 0, the quantity sgn(xo)| n — 1| is n — 1, and the last two equations
combine to give
uic=n+0n where dn=Au?/(n-1). (187)

This is the expression we seek. The contribution of Au? to uic is obvious, and the relative
coefficient errors dazy, da1y, and daou will be easy to calculate accurately.

The Figure 12 post processing uses the simple solution zic from the Figure 9 algorithm and
the cubic-equation coefficients ao and a1 to calculate the remaining solutions zzc and zsc.
The post processing invokes the Figure 8 quadratic-equation algorithm to calculate z2c and

z3c as the two solutions of the quadratic equation

—a, C—a;
7z24+Bz+C=0 where C=—— and B= )
Z1C Z1C

In the situation of interest, the difference z2c — z3c is smaller than the quadratic-equation
zero-guard range, which implies that |D| < Dee. The quadratic-equation algorithm sets
determinate D to zero and calculates z2c and z3c as the equal values
B dg + d1Z1c

VA =7 = —
To this equation, apply the expressions a1 = 2xaxo+x3 — Az2 and ao = —xa (xZ — Az?)
from Equations (123) and (124). Then divide through by xo to obtain the expression for
the normalized solutions uzc = z2¢/xo0 and usc = z3c/Xo.

—n(1—Au?) + 2n + 1 — Au®)u,c
PAERS '

Upc = Uzc =

Apply uic = n + on from Equation (187) and simplify.
2n% + (2n + 1)dn — dnAu?
2(112 + 2ndn + 8112)

Upc = Uzc =

Drop second-order error terms: —nAu? in the numerator and dn? inside the denominator
parentheses.
3 20+ (2n+ Ddn
t2e = T 2+ 28n/m)
Multiply numerator and denominator by (1 — 26n/n) and simplify, dropping terms that

contain dn? from both the numerator and denominator. The result for uzc = usc
corresponds to uic in Equation (187).

Uyc = Uzc = 1 + duyc where duyc = — on (188)

Equations (187) and (188) are the desired expressions for the normalized calculated
solutions uic = z1c/Xo, uzc = z2¢/Xo, and usc = z3c/xo. We can now find the corresponding
formulas for the normalized check coefficients and the relative coefficient errors dazy, daiu,
and daou.
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Normalize the cubic-equation coefficients az, a1, and ao in Equations (122) to (124) by the
appropriate power of xo.

az/xo = —-(M+2) ai/x5 = 2n+1-Au? ao/xs = -n (1 —Au?). (189)
Do the same for the check coefficients in Equation (180).

azc/xo = —(uic+uzc+usc) aic/x3 = uic(uzc+usc) +uzcusc  aoc/xs = —uicuzcusc (190)

We apply Equations (187) to (190) to Equation (82) to find the formulas for the relative
coefficient errors dazy, 6aiu, and daou.

Sa,. = azc/Xo — az/Xg Sa.. = a1C/X(2) - a1/X(2) Sa. = aoc/Xg - ao/X(3)
2u az /X ' H al1/X(2) , o ao/Xg
The results are
n—1 n? -1 n?—1
da,, = [—————| Au?, da;, = |————| Au?, dag, = Au?
T 2 +2) T n2@2n+ 1) o n?

In deriving these formulas, we dropped all second-order error terms like 612, dnduzc, and
Suic.

Evaluate these formulas for dazy, da1y, and daou by setting Au equal to the relative zero-
guard range |Az/xo|zc given by Equations (176), (177), and (173) for post-processing
recalculation of zz and z3. The resulting values of dazu, da1u, and daou are plotted as the blue,
green, and red curves on the right-hand portions of Figures 31 and 32 where n|> 1/ = 2.9.

Derivation of Relative Coefficient Errors with Post-Processing Recalculation of zic

This final derivation calculates dazy, da1u, and daou when [xa| < [xo| and post processing
recalculates the simple solution zic. Our analysis convention that xa > xo then requires that

x0< 0 and |n|=|xa/xo| < 1.

The Figure 12 cubic-equation post-processing algorithm uses solutions z2c and z3c from the
Figure 9 cubic-equation algorithm to recalculate zic as

S 191
“1c = ZycZ3c ' ( )

This z1c formula implies that the input coefficient ao is identical to the corresponding check
coefficient aoc: ao = — z1c Z2c z3c = aoc. The conclusion that ao = aoc holds regardless of how
z2c and z3c are calculated or whether zero-guard processing is involved. Because ao = aoc,
the relative coefficient error daou is zero.

doc — 4o

=0 192
- (192)

Saou =
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The recalculation of zic does not affect solutions z2c and z3c from the Figure 9 algorithm.
We therefore use Equations (181), (183), and (184) from the no-post-processing case to
calculate z2c and zsc.

z2¢ = Z3¢ = X0 + & = Xo(1 + du) (193)

This equation for z2c and z3c and Equation (191) for zic enable us to now calculate the
check coefficients azc and aic and the relative coefficient errors dazu and dai1u.

Equation (2) gives the check coefficient azc as azc = — (z1c + z2c + z3c), so with the
equations above and ao/x3 from Equation (189) we have

aO - ZZSC
dzc = — (Za¢ + 23¢) = —
ZycZ3c Zyc
-n(1—Au?) —2(1 +§,)3
axc/Xo = .

(1+5,)?

From this expression, Equation (82) for azu, and Equation (189) for az/xo, the desired
expression for relative coefficient error dazu becomes
2(n— 13, + (n — 4)87 — 28 + nAu?

P = (+ D+ 5,7 | (15

We derive the expression for da1u in similar manner. Equation (2) gives the check
coefficient aic as aic = z1czzc + zicz3c + zz2cz3c = 2z1czzc + z5¢. Apply Equations (191) for
z1c, (193) for z2c = z3c, (189) for ao/x3 and a1/xZ, and (82) for Sai..

—a —2a, + 73
ajc = 2 . Zpc + Z3¢ = — =
ZycZ3c Zyc
,  2n(1—=Au?) + (1+3,)°
ajc/xp = .

1+ 0,

—2(n — 18, + 38, + 85 + (1 — 2n + §,)Au?

021y = (2n+1—-Au2)(1 +8,)

(195)

Recall that, in this case, post processing does not affect solutions z2c and z3c, the calculated
multiplicity 2 near-miss solutions. Therefore, Au is set equal to the relative zero-guard
range |Az/Xo|zc for the no-post-processing case. Also, xo <0 and |n| < 1.

Evaluate Equations (194) and (195) for dazu and da1u versus 1 as follows. Calculate que and

rue with Equations (164) and (165). Calculate Au as the absolute value of the negative real
solution of Equation (167). Finally, calculate du, dazy, and da1u using Equations (184),
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(194), and (195) respectively. The resulting values of dazu and da1u are plotted as the blue
and green curves in Figure 32 for —n values satisfying |-n| < { = 0.345. The value of daou
(red curve) for that range of n is zero, Equation (192). Equation (195) also provides the
da1u values for the dashed green curve at —n > £ = 0.345.
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